
Sondgeroth Lab 2/17

 1

Some of the examples and tasks in this Manual have been heavily influenced by:
Unix and Perl for Biologists: http://korflab.ucdavis.edu/Unix_and_Perl/
Basic UNIX for Biologists:
https://www.bioinformatics.purdue.edu/discoverypark/cyber/bioinformatics/services/workshops.
php

The Terminal

This is the common name for the application that gives you text-based access to the operating
system of the computer. Basically, it allows you to type input into the computer so that you
can receive output from the programs you call. On Unix based machines there is always a
‘terminal’ program.

1) Some brief tips before we move further:
a. You will need to frequently resize this window as we do the hands-on activities.

This is done as with any other window.
b. You can change the size of the text by holding ‘command’ + shift and hitting ‘+’

or ‘command’ plus the ‘-’ key.
c. You can have multiple terminal windows open at the same time.
d. You can also have multiple tabs open in each terminal window.
e. Everything you type in the terminal is case sensitive. ‘grep –F’ is not the same as

‘grep -f’. This will be a very important thing to remember when using the
terminal and creating files or folders.

Sondgeroth Lab 2/17

 2

Connecting to the server

Often with bioinformatics analysis, you will be performing tasks on a remote network server, one
much more powerful than your workstation. Let's use the terminal program you just learned
about
to connect with this server.
We will use Secure SHell (SSH) protocol to talk to the remote server. In the following
example, replace username with the user name provided to you.

Two-Factor Authentication
To improve computer security, University of Wyoming has started requiring two factor authen-
tication to grant access to network servers. Two factor implies password plus a second type of
authentication. You all have downloaded the DUO app for your phones.

2) Type ssh username@mtmoran.uwyo.edu
This will bring up the password prompt.
username1@mtmoran.uwyo.edu's password:

3) As you type the password, you will not see the cursor move. This is normal. During the

two-factor authentication, we will use the password in combination with a numeric ‘push’
in DUO
Enter the two as follows, don't forget the comma:
PASSWORD,Duo push If the authentication succeeds, the server will log you in
and present a command prompt of style: user@server:_$.
If you see this, you have successfully logged on to the server.

4) You will see that your terminal line will look like this example when you are working on
an HPC.

5) The ‘nblouin@mmmlog2 ~$’ text is the Linux command prompt. It contains the
username (nblouin), the name of the machine that the user is working on (mmmlog2) and
the name of the current directory (~). Note the command prompt may look different on
different machines. In this example the $ represents the end of the prompt.

6) What is your username?

7) What is the name of your machine?

8) What is the current directory?

Sondgeroth Lab 2/17

 3

This application is going to be your friend when working with large data sets. Get used to
making new windows (command+ shift + n), new tabs (command + shift + t), and resizing
this window.

Sondgeroth Lab 2/17

 4

Unix Tutorial

Where am I?

As you will learn everything in Unix is relative to where you are in the file system.
Therefore, knowing where you are before launching a command is valuable information.
Luckily, there are built in commands for this type of information. Understanding the location
of files will be a key part of success.

1) To find out where you are in the file system type pwd in the terminal window.
2) This will return your current working directory (print working directory)
3) As you can see above the working directory is: /home/username
4) The present directory is represented as . (dot) and the parent directory is represented as
.. (dot dot)

File Structure

Unix files are arranged in a hierarchical structure, or a directory tree. From the root directory
(/) there are many subdirectories. Each subdirectory can contain files or other subdirectories,
etc, etc. Whenever you’re using the terminal you will always be ‘in’ a directory. The default
behavior of opening a terminal window, or logging into a remote computer, will place you in
your ‘home’ directory. This is true when we logged into MtMoran. The home directory
contains files and directories that only you can modify, we will get to permissions later.

Sondgeroth Lab 2/17

 5

To see what files, or directories, you have in your home directory we will use the ls
command.

1) Type ls and hit enter
2) You should see the list of files and directories in your current folder.
3) After the ls command finishes it produces a new command prompt that is ready for your

next command.
4) The ls command can be used to list the contents of any directory not necessarily just the

one you are currently in.
5) Type ls Unix

Changing Directories

To move between directories (folders) we use the cd (change directory) command. We are
currently in our home directory. Lets move to
/home/username/Unix

The cd command uses the format:

$ cd DIRECTORY

Sondgeroth Lab 2/17

 6

1) Type cd /home/username/Unix
2) Type ls
3) Type pwd
4) You can see that using the cd command moved us to a different directory.
5) By typing ls we can see that there is different stuff in this directory.
6) Finally, using pwd shows us what directory we are not located in.
7) We could have done the previous example in separate steps
8) Type cd /home
9) Type cd username
10) Type cd Unix
11) Note that we needed to type /home but not /username When using a /Directory

you are specifying a directory that is below the root directory. Without the leading / the
system will look below the current directory.

12) Type cd home
13) Type cd /home
14) What happened with the first command?

15) You will frequently need to move up a level to a parent directory. Remember that two

dots .. are used to represent the parent directory. Every directory has a parent except
the root level.

16) Type cd ..
17) Type pwd
18) You can move multiple levels at the same time
19) Type cd /home/username/Unix
20) Type cd ../..
21) Type pwd

22) When using cd everything is relative to your current location. However you can always

use the absolute location to change directories. Lets move into the Code directory and
look at two ways to switch to the Data directory.

23) Type cd /home/username/Unix/Code
24) Option 1: Type cd ../Data
25) Type pwd
26) Type cd /home/username/Unix/Code

27) Option 2: Type cd /home/username/Unix/Data
28) Type pwd

Sondgeroth Lab 2/17

 7

29) As you can see both options get us to the same place but Option 1 will only work from
within a directory below Data. Option 2 will work from any location on the machine.

Task:

Remember the command prompt shows you the current directory you’re in, and when you’re
in your home directory it shows a tilde (~). This is Unix’s short-hand method of specifying a
home directory.

Type the following commands and record the results. Follow each command with pwd and
note how your location changes.

$ cd /
$ cd ~
$ cd /
$ cd

What were the locations after each command?

UNIX TIP: Tab complete is your friend. This is the best tip to learn early on as it will save
you keystrokes and time. Type enough letters to uniquely identify the name of a file,
directory, or program and press tab, Unix will autocomplete the word. E.g. type tou and
press tab, Unix will autocomplete the word touch (we will learn about this soon). Tab
completion occurred because there is no other command that starts with tou. If pressing tab
doesn’t work you have not typed enough unique characters, pressing tab twice will show you
a list of everything that starts with the characters you’ve typed thus far.

Change to your home directory, then use cd to move to
/home/username/Unix/Code/ directory. Use tab complete to do this.

How many keystrokes did it take?

How many does it take to do the whole thing?

In my case it takes 13 keystrokes versus the 27 it would take to type the whole string.

$ cd /home/nblouin/Unix/Code/

Sondgeroth Lab 2/17

 8

Making Directories

Creating directories in Unix is done with the mkdir (make directory) command.

$ mkdir DirectoryName

Unlike making directories on your desktop using spaces is not advised in the Unix file system.
This is why you see the use of _ in place of spaces. You can escape a space in Unix but it creates
unnecessary typing and can create issues executing certain programs. Generally, using spaces in
file and directory names is something to avoid.

1) Type cd /home/username/Unix/
2) Type mkdir Work
3) Type ls
4) Type mkdir Temp1
5) Type cd Temp1
6) Type mkdir Temp2
7) Type cd Temp2
8) Type pwd

9) In the previous example we created two temp directories but it took two steps. We could

have done this in one step with by adding an option/flag to the mkdir command.
10) Type cd ..
11) Type mkdir –p Temp1.1/Temp2.1

Task

Practice creating at least 4 directories below (“within”) the Work/ directory.

Move between them using cd by using the absolute and relative paths. Remember tab
completion is your friend!

UNIX TIP: You may remember earlier we used a flag with the mkdir command that
created two directories at once. How did we find out about the –p flag? Google? Well, you
could do that, but Unix has built in manuals for each command that give you all of the
details. Simply type man COMMAND, e.g. $ man cd $ man ls or $ man mkdir.
Even $ man man

Sondgeroth Lab 2/17

 9

To navigate in a man page use the arrow keys to move down one line at a time, space bar will
page down. To exit a man type q.

Sondgeroth Lab 2/17

 10

Making and Editing Files

In this section you will learn the basics of making files and putting things into those files. There
are a variety of ways we can accomplish this as Unix has built in multiple editors for these tasks.
We will review a few here.

$ touch FILENAME
This will create a new, empty file.

$ nano FILENAME
This is a built in text editor that will allow us to put information into a file.

1) Create two files in Unix/
a. $ touch earth.txt
b. $ touch heaven.txt

2) Type ls
3) We have now created two empty files called ‘earth.txt’ and ‘heaven.txt’
4) Type cd Work
5) Type touch basic_info.txt
6) Type nano basic_info.txt
7) We are now using an internal text editor that we can use to alter the contents of this file.
8) Add your name, email address, and favorite food to this file on separate lines.

9) Press control + x to exit and then y to save the file
10) We can also create and edit files with nano

a. $ nano onestep.txt
11) Add a line of text and save the file.

Task

In the Unix/Work/ directory create a new directory called Stuff. Add a file to Stuff called
things. Using nano type some text into things and save the file. Now edit things again
in nano but save the file as things.txt. Finally, type ls what files do you see?

Record all your commands.

Sondgeroth Lab 2/17

 11

Moving Directories and Files

To move a file or directory the mv (move) command is used. This is the first command we
have used that requires two arguments. You need to specify the source and the destination for
the moving.

$ mv SOURCE DESTINATION

1) Lets move heaven.txt and earth.txt
2) $ cd /home/username/Unix
3) $ mv heaven.txt Work/
4) $ mv earth.txt Work/
5) $ ls
6) $ ls Work/

7) We could have moved these files all at once using wildcards. An asterisk (*) means

match anything.
8) $ mv *.txt Work/ #This will move any file that ends with .txt
9) $ mv *t Work/ # This moves any file or directory that ends with a t
10) $ mv *ea* Work/ #This works because only heaven and earth contain ‘ea’
11) $ mv can also be used to rename files
12) $ touch rags
13) $ ls
14) $ mv rags Work/riches
15) $ ls Work/

16) Here we move and renamed the file rags to Work/riches
17) We can rename it without moving the file
18) $ mv Work/riches Work/rags
19) $ ls Work/

20) The mv command is used to rename files or directories, as there is no ‘rename’ command

in Unix.

Sondgeroth Lab 2/17

 12

Task

Move to your home directory and create a new directory called Here.

Without changing directories move Here to your Work directory on /home/username
/Unix/Work. After moving Here to Work move Here back to home but rename it
AndBackAgain. Record your commands.

UNIX TIP: You can retrieve previous commands by accessing your history. On the
command prompt pressing the up arrow will cycle through your previous commands. Typing
history will list the last few hundred commands you entered. We will learn how to search
through this type of information later. But using the up arrow to modify previous commands
or commands with typo’s is another way to save time and keystrokes.

Sondgeroth Lab 2/17

 13

Copying Directories

To copy a file or directory cp (copy) command is used. Just like mv you will need a source and a
destination to copy something.

$ cp SOURCE DESTINATION
1) Copying files is similar to moving them
2) $ cd /home/username/Unix/Work
3) $ mkdir Copy
4) $ cd Copy
5) $ touch file1
6) $ cp file1 file2
7) $ ls

8) Remember we do not have to be in a directory to make, move, or copy files.
9) $ touch ~/file3
10) $ ls
11) $ cp ~/file3 . # here we represent the current directory with a . (dot)
12) $ ls

13) The cp command can also move directories using a flag
14) $ mkdir Example
15) $ mv file* Example/
16) $ ls

17) $ cp –r Example/ Example2
18) $ ls Example Example2/

19) What happens without the –R flag?
20) $ cp Example2/ Example3

21) The error occurs because the –r flag means copy recursively. Since Example2 is not

empty cp (without –r) does not descend into Example2 and copy those files it simply
tries to move a directory without moving the things in the directory.

Sondgeroth Lab 2/17

 14

Task

Lets dig into the man for cp.

Are there other ways to tell cp to copy recursively?

How could we use cp to preserve the newest version of a file?

Besides $ man cp how else could we get help on this, or other, Unix commands?

How can we be sure cp will not overwrite files?

Sondgeroth Lab 2/17

 15

Viewing the contents of a directory

To view the contents of directories we use the ls (list segments) command.

$ ls DIRECTORY

If no directory is provided ls will list the contents of the current directory.

1) We have been using ls frequently to check directory contents. However, there are many
options for using ls. As the previous example noted we can use ls on multiple
directories at the same time.

2) $ ls –l /home/username/Unix
3) $ ls –p /home/username/Unix
4) $ ls –othr /home/username/Unix #Nic’s favorite!!

5) As you can see these flags/options change the way ls displays the contents of the

directory, giving us more or less information.
6) Notice the changes that the –p or the combination of –o, -t, -h, and –r flags makes to the

output.

Sondgeroth Lab 2/17

 16

Task

Try the following commands on any directory of your choosing.

$ ls –l

$ ls –R

$ ls –l –t –r

$ ls –lhS

Look through the man and determine what each of these flags does.

How can you display hidden files with ls?

Can you sort files by extension? How?

When sorting by extension what is another good flag to use?

Sondgeroth Lab 2/17

 17

The most dangerous Unix command! Proceed with extreme caution.

If you run ls on your Unix/Work/ directory I’m sure it is full of lots of empty files and
directories by this point. Wouldn’t it be nice if there were a way to clean that up? Of course there
is a way, however it can be dangerous.

Please read this section carefully. Misuse of the rm command can
delete your entire computer. Seriously.

To delete directors and files from the system we have two options the rm (remove) and rm –
r commands.

$ rm FILE

This command will remove files, PERMANTELY. There is no trashcan, recycle bin, or archive.
Files or directories removed by rm are gone, forever. With rm it is possible to delete everything
in your home directory, everything. This is why it is such a potentially dangerous command.

$ rmdir DIRECTORY

This command will remove any directory along with ALL of its contents.

One more time just to be clear. It is possible to delete EVERY file you have ever created with the
rm command. Thankfully there is a way to make rm a bit safer, and on DT2, this is the default
setting. Using the –i flag rm will ask for confirmation before deleting anything.

1) $ cd /home/username/Unix/Temp1/
2) $ ls

3) If you remember the Temp2 directory is empty therefore we can use rm -r to delete it.
4) $ rm -r Temp2/
5) $ ls
6) We can now move up a level and remove Temp1
7) $ cd ..
8) $ rm -r Temp1/
9) $ ls

10) Now try $ rm Temp1.1

Sondgeroth Lab 2/17

 18

11) See the error message letting us know that we are trying to remove a directory not a file.
12) See? Linus is warning us. So back to the recursive flag:
13) $ rm –r Temp1.1

14) Note the default behavior of rm is to simple delete with out confirmation of what you

typed (except for directories of course). This is why it is so dangerous.
15) You can have rm ask for conformation before deleting anything using the –i flag (no one

does this in practice though).
16) $ mkdir –p Temp1/Temp2/Temp3/Temp4
17) $ cp –r Temp1 Temp1.1
18) $ ls
19) $ rm Temp1
20) $ rm –i Temp1.1
21) $ ls

Sondgeroth Lab 2/17

 19

Task

Use rm or rmdir or any combination to remove the Work/ directory and all of its contents.
Take some time to review man rm.

Sondgeroth Lab 2/17

 20

Display the contents of a file

There are various commands available to display/print the contents of a file. The default of all
these commands is to display the contents of the file on the terminal. These commands are
less, cat, head, and tail.

$ less FILENAME

Displays file contents on the screen with line scrolling (to scroll you can use ‘arrow’ keys,
‘PgUp/PgDn’ keys, ‘space bar’ or ‘Enter’ key). Press ‘q’ to exit.

$ cat FILENAME

Simplest form of displaying contents. It catalogs the entire contents of the file on the screen. In
case of large files, entire file will scroll on the screen without pausing.

$ head FILENAME

Displays only the 10 starting lines of a file by default. Any number of lines can be displayed with
the –n flag followed by the number of lines.

$ tail FILENAME

As the name implies the opposite of head this displays the last 10 lines. Again –n option can be
used to change this.

1) Lets work though these commands.
2) $ cd /home/username/Unix
3) $ less Data/Arabidopsis/At_proteins.fasta

4) Try this: type “=”. This is quite a big file. You can see at the bottom less displays we

are looking at lines 1-32 of 269,463 and we are 0% through the file.
5) We can use ‘h’ to get help commands for less.

6) Page forward using ‘space’, move a line at a time with ‘j’ (forward) or ‘k’ (backward) or

N lines.
7) Hit ‘q’ to exit the help
8) Navigate around using the various commands
9) Try hitting ‘j’ ‘enter’ ‘100’ ‘enter’
10) Press ‘q’ when ready to exit less.
11) Navigate the file using the more command, press ‘q’ to exit.

12) $ cat is the simplest form of viewing and file. cat prints all of the file to the screen

from start to finish.

Sondgeroth Lab 2/17

 21

13) $ cat Data/Arabidopsis/At_genes.gff.short
14) Did you get all of that?
15) $ cat is most useful with combined with other commands using | (pipes). We will cover

this later.
16) The last two commands head and tail are fantastic when you need to look at a file and

make sure things are in order.
17) $ head Data/GenBank/E.coli.genbank
18) $ head Data/GenBank/Y.pestis.genbank

19) We can change how many lines we see using the –n flag
20) $ head –n 1 Data/GenBank/E.coli.genbank Data/GenBank/Y.pestis.genbank

21) $ tail Data/GenBank/E.coli.genbank Data/GenBank/Y.pestis.genbank

22) This shows us the end of a file. This can be important when transferring files or data and

needing to make sure everything transferred completely.

Sondgeroth Lab 2/17

 22

File permissions

All files in any operating system have a set of permissions associated with the file that define
what can be done with the file and by whom. What = read, write (modify), and/or execute a file.
Whom = user, group, or public.

These permissions are denoted with the following syntax:

Permissions
Read r
Write w
Execute x

Relations
User u
Group g
Others o
all users a

Changing permissions is done via chmod (CHange MODe) command

$ chmod [Options] RELATIONS [+ or -] PERMISSIONS FILE

1) Lets make a new directory and add some files.
2) From the Unix/ directory
3) $ mkdir Allow
4) $ cd Allow/
5) $ touch read.txt write.txt execute.go all.txt
6) $ ls
7) $ ls –l

Sondgeroth Lab 2/17

 23

8) We have created some files but we need to change the permission for these files in order

to share these or execute them as programs.
9) Since you created these files you’re the owner and have the ability to change their

permissions with chmod.
10) From this you can see the default is for the user to have rw access and the group and

others to have r access.
11) Lets add execute permissions for everyone on execute.go
12) $ chmod a+x execute.go
13) $ ls –l

14) We have now added the “x” option to all three levels of permission for this file
15) If we want other members of the group to have write permission for write.txt we can

do that as well.
16) $ chmod a+w write.txt
17) $ ls –l

18) Others still cannot modify this file but now members of the group will be able to modify

the contents.
19) If we want a file to be completely public we need all of the flags active.
20) $ chmod a+rwx all.txt
21) $ ls –l

22) Now the file all.txt can be read, written, or executed by anyone on this system.
23) We can also remove permissions using this same command.
24) $ chmod a-rwx all.txt
25) $ ls –l

26) Now we have removed all access to the all.txt file even the owner’s access.
27) Finally we can change the permissions of all the files in a directory with the –R flag.
28) $ cd ..
29) $ chmod –R a+rwx Allow/
30) $ ls –l Allow/

31) This made all of these files public in one step.

Sondgeroth Lab 2/17

 24

Task

What group does your user account belong to?

Make a directory and some files. Change the permissions using chmod. Now using –R flag
make the whole folder rwx. Make a new directory below your test directory with a new file.
What are the permissions on that new file?

Sondgeroth Lab 2/17

 25

Your first script

Just like Perl, Python, R, etc. Unix can be used as a programming language. Depending upon the
task a shell script might be all you really need to get your task completed.

To make a script we simply write shell commands into a file and then treat that file like any other
program or command.

1) From the Unix/Code/ directory
2) $ nano hello.sh
3) Type the following two lines

#This is my first shell script
echo “Hello World”

4) Save the file and exit nano
5) $ chmod u+x hello.sh
6) $./hello.sh
7) Voilà! It’s that simple.
8) Now move to another directory and see if you can still run hello.sh
9) This works because we’ve added the Code directory to the PATH. Basically Unix

knows to look in this directory for commands we type.

Sondgeroth Lab 2/17

 26

Task

From your home directory (execute all commands from your home directory)
1) Move hello.sh to Unix/
2) run hello.sh
3) Now move hello.sh back to Unix/Code, it should work again

Sondgeroth Lab 2/17

 27

Useful shell scripts

Look in the Data/Unix_test_files directory. You should see several files (all are empty)
and four directories.

1) Put the following information into a shell script and save it as cleanup.sh.

#!/bin/bash
mv *.txt Text
mv *.jpg Pictures
mv *.mp3 Music
mv *.fa Sequences

2) Now return to Data/Unix_test_files
3) $ ls -l
4) $ cleanup.sh
5) $ ls -l
6) It should place the relevant files in the correct directories. This is a relatively simple

use of shell scripting. As you can see the script just contains regular Unix commands
that you might type at the command prompt.

7) Did you notice the #!/bin/bash line in this script? There are several different
types of shell script in Unix, and this line makes it clearer that a) that this is actually a
file that can be treated as a program and b) that it will be a bash script (bash is a type
of Unix).

Sondgeroth Lab 2/17

 28

Task

Copy this information into a file called change_file_extension.sh and again place that
file in the Code directory.

 #!/bin/bash

 for filename in *.$1
 do
 mv $filename ${filename%$1}$2
 done

Now go to the Data/Unix_test_files/Text directory. Run the following command:
 $ change_file_extension.sh txt text

Now run the ls command to see what has happened to the files in the directory?

Try using this script to change the file extensions of other files.

It’s not essential that you understand exactly how this script works at the moment (things will
become clearer as you learn Python), but you should at least see how a relatively simple Unix
shell script could be potentially very useful.

Sondgeroth Lab 2/17

 29

Unix Power Commands

The commands that you have learned so far are essential for doing any work in Unix, but they
don’t really let you do anything that is very useful. The following section will introduce new
commands that will start to show you the power of Unix.

Pipes and redirects

Everything we have done so far has sent the result of the command to the screen. This is feasible
when the data being displayed is small enough to fit the screen or if it is the endpoint of your
analysis. But for large data outputs, or if you need a new file, printing to the screen isn’t very
useful. Unix has built in methods to hand output from commands using > (greater than) or <
(lesser than) or >> signs.

< redirects the data to the command for processing

> redirects the data from the command’s output to a file. The file will be created if it is non-
existing and if present it will overwrite the contents with the new output data (you will lose the
original file).

>> unlike > this redirection lets user append the data to an already existing file or a new file

Another special operator | (called pipe) is used to pass the output from a command to another
command (as input) before sending it to an output file or display.

Some examples:
$ cat FILE1 > FILE2

Creates a new file (file2) with same contents as old file (file1)

$ cat FILE1 >> FILE2

Appends the contents for file1 to file2, equivalent to opening file1, copying all the contents,
pasting the copied contents to the end of the file2 and saving it!

$ cat FILE1 | less

Sondgeroth Lab 2/17

 30

Here, cat command displays the contents of the file1, but instead of sending it to standard
output (screen) it sends it through the pipe to the next command less so that contents of the file
are now displayed on the screen with line scrolling.

1) From the Unix/Data/ directory
2) $ cat seq.fasta
3) $ head seq.fasta > new.txt
4) $ cat new.txt
5) $ tail seq.fasta > new.txt
6) $ cat new.txt
7) Now lets try that with the append option.
8) $ head –n 1 seq.fasta > new.txt
9) $ tail –n 1 seq.fasta >> new.txt

Sondgeroth Lab 2/17

 31

Task

The Data/ directory contains a few fasta files with the extension .fa. Combine all of these
files into a single file called sequences.fasta using redirects.

Sondgeroth Lab 2/17

 32

Grep

The grep (globally search a regular expression and print) is one of the most useful commands
in Unix and it is commonly used to filter a file/input, line by line, against a pattern.

grep [OPTIONS] PATTERN FILENAME

Like any other command there are various options available man grep for this command. Most
useful options include:

-v inverts the match or finds lines NOT containing the pattern.
--color colors the matched text for easy visualization
-i ignore case for the pattern matching.
-l lists the file names containing the pattern
-n prints the line number containing the pattern
-c counts the number of matches for a pattern

Some typical scenarios to use grep:

• Counting number of sequences in a multi-fasta sequence file
• Get the header lines of fasta sequence file
• Find a matching motif in a sequence file
• Find restriction sites in sequence(s)
• Get all the Gene IDs from a multi-fasta sequence files and many more.

You might already know that fasta files header must start with a '>' character, followed by a
DNA or protein sequence on subsequent lines. To find only those header lines in a fasta file, we
can use grep.

1) Move to Unix/Data/Arabidopsis
2) $ grep “>” intron_IME_data.fasta
3) Did you get that?
4) Remember the default for a program is to output to the screen.
5) We can fix this with a redirect or a pipe.
6) $ grep “>” intron_IME_data.fasta | less
7) This takes the output from grep and sends it as input to less
8) What if we want to know how many sequences are in a file?
9) $ grep –c “>” intron_IME_data.fasta
10) We can also get lines that don’t match our string.
11) $ grep –v “>” intron_IME_data.fasta | less
12) Given a the fasta file structure we can use grep to separate this information
13) $ grep “>” intron_IME_data.fasta > intron_headers.txt

Sondgeroth Lab 2/17

 33

14) $ grep –v “>” intron_IME_data.fasta > intron_sequences.txt
15) We can even get some biological information from grep
16) $ grep –-color “GAATTC” chr1.fasta
17) GAATTC is the EcoR1 cut site. The --color option highlights the matches in this

sequence.

Task

Let’s use grep to get some information that we might be interested in knowing from these files.
Using grep and these files lets determine:

1) How many EcoR1 cut sites are there in chr1.fasta?
2) Can you find a transcription factor in At_proteins.fasta? How many?
3) What does the following command do?

$ grep –c –w “ATP” At_proteins.fasta
$ grep –l “AAA” ../*.fa

4) Let’s find all of the transcription factor annotations!

$ grep –i “transcription factor” At_proteins.fasta | less

5) What if we don’t want to see genes on chromosome 1?
6) What if we only want to genes on chromosome 5?

Sondgeroth Lab 2/17

 34

Regular expressions

grep + regular expressions = power! Before we get into this let’s start with a task.

Task

The `.` and `*` characters are also special characters that form part of the regular expression.
Try to understand how the following patterns all differ. Try using each of these patterns with
grep -c against any one of the sequence files. Can you predict which of the five patterns will
generate the most matches?

 ACGT
 AC.GT
 AC*GT
 AC.*GT

The asterisk in a regular expression is similar to, but NOT the same, as the other asterisks that
we have seen so far. An asterisk in a regular expression means: 'match zero or more of the
preceding character or pattern’

Try searching for the following patterns to ensure you understand what `.` and `*` are doing:

 A...T
 AG*T
 A*C*G*T*

Sondgeroth Lab 2/17

 35

When working with the sequences (protein or DNA) we are often interested to see if a particular
feature is present or not. This could be various things like a start codon, restriction site, or even a
motif. In Unix all strings of text that follow some pattern can be searched using some formula
called regular expressions. e.g. As you learned above regular expressions consist of normal and
metacharacters. Commonly used characters include

Expression Function
. matches any single character
$ matches the end of a line
^ matches the beginning of a line
* matches one or more character
\ quoting character, treat the next character followed by this as an ordinary character.
[] matches one or more characters between the brackets
[range] match any character in the range
[^range] match any character except those in the range
\{N\} match N occurrences of the character preceding (sometimes simply +N) where N is a number.
\{N1,N2\} match at least N1 occurrences of the character preceding but not more than N1
? match 1 occurrence of the character preceding
| match 2 conditions together, \(this\|that)\ matches both this or that in the text

Some common patterns for Nucleotide/Protein searches.

Patterns Matches
^ATG Find a pattern starting with ATG
TAG$ Find a pattern ending with TAG
^A[TGC]G Find patterns matching either ATG, AGG or

ACG
TA[GA]$ Find patterns matching either TAG or TAA
^A[TGC]G*TGTGAACT*TA[GA]$ Find gene containing a specific motif
[YXN][MPR]_[0-9]\{4,9\} Find patterns matching NCBI RefSeq (eg

XM_012345)
\(NP\|XP\)_[0-9]\{4,9\} Find patterns matching NCBI RefSeq proteins

Let’s use grep to find a zinc finger motif. For simplicity let’s assume zinc finger motif to be
CXXCXXXXXXXXXXXXHXXXH. Either you can use dots to represent any amino acids or
use complex regular expressions to come up with a more representative pattern.

$ grep --color “C..C............H...H” At_proteins.fasta

$ grep --color “C.\{2\}C.\{12\}H.\{3\}H” At_proteins.fasta

$ grep --color “C[A-Z][A-Z]C[A-Z]\{12\}H[A-Z][A-Z][A-Z]H”
At_proteins.fasta

Sondgeroth Lab 2/17

 36

These all do the exact same thing. As you can see regular expressions can be very useful for
finding patters of all kinds.

UNIX TIP: You can use regular expressions in grep, sed, $ awk, less, perl,
python, certain text editors almost any programing language or tool can utilize the power of
regex.

Sondgeroth Lab 2/17

 37

tr

The tr (transliterate) command is used to translate the input file and produce a modified
output. It uses two sets of parameters and replaces the occurrence of the characters in the first set
with the elements from the other set.

$ tr [options] “String1” “String2” < INFILE > OUTFILE

This makes changing things in files very easy.

1) From the Data/Arabidopsis/ directory
2) $ head –n 2 chr1.fasta
3) $ head –n 2 chr1.fasta | tr ‘A-Z’ ‘a-z’
4) Using tr we changed the fasta from uppercase to lowercase *as well as the headers*
5) Here are some useful tr commands:
6) $ tr “[:lower:]” “[:upper:]”
7) $ tr “ATCG” “AUCG” # Turns cDNA into RNA
8) $ tr ‘ ‘ ‘\n’ #Single spaces a document
9) In the previous command \n is the syntax for a newline Unix. Sadly, Mac, PC’s, and

Unix DO NOT use the same newline character.
10) From the Unix/Data/Misc directory
11) $ cat -v excel_data.csv
12) Do you see all of those ^M characters? This is how a Windows (Dos) represents the

newline, Unix does not like this.
13) $ tr -d ‘^M’ < excel_data.csv
14) $ tr –d ‘^M’ < excel_data.csv > excel.fixed
15) Newer versions of Unix (including this one) have built in commands to deal with this

exact issue mac2unix, dos2unix, and unix2dos. These programs will edit the file and save
it without any redirects.

16) $ dos2unix excel_data.csv
17) Anytime you bring a table or file from your PC or Mac to the command line I would

recommend you fix the newline character.

Sondgeroth Lab 2/17

 38

sed

tr lets you change a range of characters but what if you want to change a specific string? Enter
sed. sed is a stream editor that reads one or more text files and makes changes or edits then
writes the results to standard output. The simple syntax for sed is:

$ sed ‘OPERATION/REGEXP/REPLACEMENT/FLAGS’ FILENAME

Above, / is the delimiter but you can use _ | or : as well.

OPERATION = the action to be performed, the most common being s which is for substitution.

REGEXP and REPLACEMENT = the search term and the substitution for the operation be
executed.

FLAGS = additional parameters that control the operation, common FLAGS include:

g replace all the instances of REGEXP with REPLACEMENT (globally)
n (n=any number) replace nth instance of the REGEXP with REPLACEMENT
p If substitution was made, then prints the new pattern space
i ignores case for matching REGEXP
w If substitution was made, write out the result to the given file
d when specified without REPLACEMENT, deletes the found REGEXP

1) From Unix/Data/Arabidopsis
2) $ head –n 1 chr1.fasta
3) $ sed ‘s/Chr1/Chromosome_1/g’ chr1.fasta | head –n 1
4) $ sed ‘s:Chr1:Chromosome_1:g’ chr1.fasta | head –n 1
5) As you can see these two commands do the same thing with different delimiters. We

Changed “Chr1” to “Chromosome_1” in the file. However this was not done
permanently. To do that we would have to write to a new file or use a flag within sed.

6) $ touch greetings.txt
7) $ echo “Hello there” >> greetings.txt
8) $ head greetings.txt

9) Now we have our file to manipulate with sed. We have three options for altering and

saving the file

Sondgeroth Lab 2/17

 39

10) Option 1: Make a new file
11) $ sed ‘s/Hello/Hi/g’ greetings.txt > greetings_short.txt
12) $ head greetings*

13) Option 2: Edit in place but make a backup of the original with the given extension
14) $ sed –i.bak ‘s/Hello/Hi/g’ greetings.txt
15) $ head greetings*

16) Option 3: Edit in place but without a backup. NOTE if you run out of system memory or

have an error this will rewrite the original file. You will not get that file back.
17) $ sed –i ‘s/Hello/Hi/g’ greetings.txt.bak
18) $ head greetings*

Sondgeroth Lab 2/17

 40

word count

wc (word count) is a useful command in bioinformatics because it can quickly identify how
many lines or words are in a file.

$ wc FILENAME

1) From Data/Arabidopsis
2) $ wc At_genes.gff
3) Here we have the total number of lines, words, and bytes in this file

4) $ wc –l At_genes.gff

5) This prints out just the line count for the input file.
6) $ wc is best used in with pipes but it can be useful to count things as well
7) $ ls /home/UserName/Unix/Data/Sequences | grep “.fa” | wc –l
8) This command tells you how many .fa files there are in the Sequences directory.

Sort

Sondgeroth Lab 2/17

 41

$ sort command can be used to arrange things in a file. Simplest way to use this command is:

$ sort FILE1 > SORTED_FILE1

-n numerical sort
-r reverse sort
-k N,N sort the Nth field (column), where N is a number. Sorting can also be done on the

exact character on a particular field eg. –k 4.3,4.4 sorts based on 3rd and 4th

character of the 4th field. Additionally you can supply additional –k for resolving
ties.

-t specify the delimiters to be used to identify fields (default is TAB) -t ‘:‘ to use
‘:’ as delimiter

Task

The Unix/Data/Sequences directory consists of numerically labeled files. Unix can sort either
alphabetically or numerically (not both) and hence they are arranged in Seq1.fa, Seq10.fa,
Seq11.fa etc. In order to sort them in an easy to read way, try using

$ ls |sort –t ‘q’ -k 2n

This command lists all the files in sequences directory and then passes it to sort command. Sort
command then sorts it numerically but only using 3rd and 4th letters of the first field (file name)

Try using sort on Data/Arabidopsis/At_genes.gff

$ sort -r -k 1,1 At_genes.gff
$ sort -r -k 4,4 At_genes.gff

uniq

Sondgeroth Lab 2/17

 42

uniq (unique) command removes duplicate lines from a sorted file, retaining only one instance
of the running matching lines. Optionally, it can show only lines that appear exactly once, or
lines that appear more than once. uniq requires sorted input since it compares only
consecutive lines.

$ uniq [OPTIONS] INFILE OUTFILE

Useful options include:

-c count; prints lines by the number of occurrences
-d only print duplicate lines
-u only print unique lines
-i ignore differences in case when comparing
-s N skip comparing the first N characters (N=number)

Task

From Data/

1) $ cat uniq.txt
2) Using the above options do the following:

a. Count the occurrence of each unique line
b. Print only duplicated lines.
c. Print only unique lines.

Comparing two files

diff (difference) reports differences between two files.

Sondgeroth Lab 2/17

 43

$ diff [OPTIONS] FILE1 FILE2

Useful options include

-b ignore blanks
-w ignore white space (spaces and tabs)
-i ignore case
-r recursively compare all files (when comparing folders)
-s list all similar files (when comparing folders)
-y side by side comparison of files

Differences are reported line by line using a (addition), c (changed), and d (deleted) along with <
or > indicating the direction of the change.

1) From Unix/Data
2) $ diff uniq.txt diff.txt > diff_test.txt
3) $ cat diff_test.txt

4) He we see the output from diff that covers each change
5) 2d1 = line 2 in file 1 is deleted from file 2 < aa
6) 5,12d3 = lines 5-12 in file 1 are deleted at line 3 in file 2
7) 15a7,8 = at line 15 in file 1 there is an addition of lines 7,8 in file 2.

comm (common) command compares two sorted files line by line.

$ comm [OPTIONS] FILE1 FILE2
-1 suppress lines unique to FILE1
-2 suppress lines unique to FILE2
-3 suppress lines that appear in both files

Task

Use comm with all three options on uniq.txt and diff.txt

Sondgeroth Lab 2/17

 44

Dividing files

cut divides the file into several parts and displays selected columns or fields from each line of a
file. Normally cut command requires how the fields are separated and what fields need to be
displayed.

$ cut –f 1 FILE displays 1st column of a file, assumes TAB as delimiter

$ cut –d ‘,’ –f 2-4 FILE displays columns 2,3 and 4 of a file separated by “,”

$ cut –d ‘|’ –f 1,9 FILE displays 1st and 9th columns of a file separated by “|”

split generates output files of a fixed size (bytes or lines). Useful when a huge file needs to be
processed.

$ split -d –l 100 FILENAME SUFFIX

here –d specifies numeric suffix only (suffix00, sufix01, suffix02 etc.) while –l specifies
number of lines in each file (100 in this case). If you want to split based on bytes, you can use –
b option (–b 1k or –b 1m for 1 KB and 1 MB respectively)

You can join these files back using

$ cat suffix0[0-2] >> joinedfile

Task

1) Display only first column of the At_genes.gff file using cut
2) Now can you display that in a way so you can actually see what the output looks like?
3) What if you want column 1, 4, and 5?
4) Let’s split At_genes.gff into 10,000 line segments. Use “gff_split” as the suffix for

the new files.
5) How many files did that make?
6) Can you put them back together?

Sondgeroth Lab 2/17

 45

A Unix “One-liner”

Let's say that we want to extract five sequences from intron_IME_data.fasta that are: a)
from first introns, b) in the 5' UTR, and c) closest to the TSS. Therefore we will need to look for
FASTA headers that contain the text 'i1' (first intron) and also the text '5UTR'. Every intron
sequence in this file has a header line that contains the following pieces of information:

• gene name
• intron position in gene
• distance of intron from transcription start site (TSS)
• type of sequence that intron is located in (either CDS or UTR)

We can use grep to find header lines that match these terms, but this will not let us extract the
associated sequences. The distance to the TSS is the number in the FASTA header which comes
after the intron position. So we want to find the five introns which have the lowest values.

Before I show you one way of doing this in Unix, think for a moment how you would go about
this if you didn't know any Unix...would it even be something you could do without manually
going through a text file and selecting each sequence by eye? Note that this Unix command is so
long that --- depending on how you are viewing this document --- it may appear to wrap across
two lines. When you type this, it should all be on a single line:

$ tr '\n' '@' < intron_IME_data.fasta | sed 's/>/#>/g' | tr '#'
'\n' | grep "i1_.*5UTR" | sort -nk 3 -t "_" | head -n 5 | tr '@'
'\n'

Task

Break down the above command and figure out what it is doing.

See if you can write your own one-liner. In the At_genes.gff file there are multiple types in
column 3 (gene, CDS, mRNA, etc) how may of each type are there? This can be done with a
one-liner in 3 commands.

Sondgeroth Lab 2/17

 46

Command Function Syntax/example usage
Navigation
ls list contents ls [OPTIONS] DIRECTORY
pwd print working directory pwd
cd change directory cd ~ or cd #home directory

cd .. #previous (parent directory)
File/Directory operations
mkdir make directory mkdir DIRECTORY
cp copy files/directories cp SOURCE DESTINATION
man manual page (help) man COMMAND
mv move files/directories mv SOURCE DESTINATION
touch create file touch FILE
nano edit file nano FILE
less view file (with more options) less FILE
more view file (with less options) more FILE
cat catalog file contents cat FILE
head show first few lines of a file head FILE
tail show last few lines of a file tail FILE
rmdir remove empty directory rmdir DIRECTORY
rm remove file(s) rm FILE
Compression/archiving
zip zip compress zip OUTFILE.zip INFILE.txt

zip -r OUTDIR.zip DIRECTORY
unzip decompress zipped file unzip ANYTHING.zip
tar archive and compress files/directories tar -czvf OUTFILE.tar.gz DIRECTORY

tar -xzvf OUTFILE.tar.gz
gzip gzip files gzip SOMEFILE
gunzip decompress gzipped files gunzip SOMEFILE.gz
File permissions
chmod change permissions for files/directories chmod [OPTIONS] RELATIONS[+ or -

]PERMISSIONS FILE
File manipulations
grep search a pattern grep [OPTIONS] “PATTERN” FILENAME
sed stream edit a file sed 's/search/replace/g' FILENAME
awk multi-purpose command awk ‘PATTERN {ACTION}’ FILENAME
tr translate or transliterate a file tr [OPTIONS] “STRING1” “STRING2”

<INFILE
wc word count wc FILENAME
sort sort files sort FILE1 > SORTED_FILE1
uniq display unique lines uniq [OPTIONS] INFILE > OUTFILE
diff display difference diff [OPTIONS] FILE1 FILE2
comm display common lines among files comm [OPTIONS] FILE1 FILE2
cut break files vertically based on fields cut –d “DELIMITER” –f NUMBER FILE
split break files horizontally split [OPTIONS] FILENAME

