
Ensuring identifiability in hierarchical mixed effects Bayesian models
KIONA OGLE ,1 AND JARRETT J. BARBER

School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona 86011 USA

Citation: Ogle, K., and J. J. Barber. 2020. Ensuring identifiability in hierarchical mixed effects Bayesian
models. Ecological Applications 30(7):e02159. 10.1002/eap.2159

Abstract. Ecologists are increasingly familiar with Bayesian statistical modeling and its
associated Markov chain Monte Carlo (MCMC) methodology to infer about or to discover
interesting effects in data. The complexity of ecological data often suggests implementation of
(statistical) models with a commensurately rich structure of effects, including crossed or nested
(i.e., hierarchical or multi-level) structures of fixed and/or random effects. Yet, our experience
suggests that most ecologists are not familiar with subtle but important problems that often
arise with such models and with their implementation in popular software. Of foremost consid-
eration for us is the notion of effect identifiability, which generally concerns how well data,
models, or implementation approaches inform about, i.e., identify, quantities of interest. In this
paper, we focus on implementation pitfalls that potentially misinform subsequent inference,
despite otherwise informative data and models. We illustrate the aforementioned issues using
random effects regressions on synthetic data. We show how to diagnose identifiability issues
and how to remediate these issues with model reparameterization and computational and/or
coding practices in popular software, with a focus on JAGS, OpenBUGS, and Stan. We also
show how these solutions can be extended to more complex models involving multiple groups
of nested, crossed, additive, or multiplicative effects, for models involving random and/or fixed
effects. Finally, we provide example code (JAGS/OpenBUGS and Stan) that practitioners can
modify and use for their own applications.

Key words: crossed effects; equifinality; fixed effects; hierarchical model; identifiability; MCMC;
multi-level model; nested effects; prior distribution; random effects; sum-to-zero; sweeping.

INTRODUCTION

Complex data often suggest models with crossed or
nested (hierarchical or multi-level) structures of fixed or
random effects. Ecological analyses of such data are
increasingly common (Fig. 1), including, in particular,
the use of Bayesian models and associated Markov chain
Monte Carlo (MCMC) methodology for implementing
such models (Ellison 2004, Clark 2007, McCarthy 2007,
Ogle and Barber 2008, Hobbs and Hooten 2015, Dora-
zio 2016, Touchon and McCoy 2016). Implementation
of Bayesian methods has been facilitated by popular and
fairly user-friendly software (e.g., Kruschke 2014, McEl-
reath 2016, Monnahan et al. 2017), such as JAGS (Plum-
mer 2003, 2012), WinBUGS or OpenBUGS (Lunn et al.
2000, Lunn et al. 2009), and Stan (Stan Development
Team 2018, Carpenter et al. 2017). Yet, our experience
also suggests that ecologists are relatively unfamiliar
with subtle and important identifiability problems that
often arise with the implementation of such models
(Gelfand and Sahu 1999, Gelman 2004, Gelman and
Hill 2007, Hines et al. 2014). These problems can lead to
poor mixing and convergence behavior of the numerical

sampling algorithm, potentially producing biased
parameter estimates. In turn, this can mislead inference
about interesting quantities (Raue et al. 2013), despite
otherwise reasonable models and informative data. Here,
we focus on the diagnosis and remediation of identifia-
bility problems that can arise during the numerical
implementation of seemingly reasonable hierarchical
Bayesian models.
While a Bayesian model may be relatively straightfor-

ward to specify, its implementation is more subtle, with
potential pitfalls that can mislead inference about
effects. In particular, as alluded to above, implementa-
tion may lead to identifiability problems (e.g., Omlin
and Reichert 1999, Rannala 2002, Gelman 2004, Gel-
man and Hill 2007, Raue et al. 2013, Holand and
Steinsland 2016). In the strict sense, non-identifiability
of parameters refers to a constancy in the posterior
probability or likelihood with changes in the parameters
(e.g., Raue et al. 2013), but we broadly consider (non)
identifiability as the (in)ability of models, data, or
implementations to inform about effects of interest. For
example, a model may be over-parameterized, whereby
a change in one parameter compensates exactly for the
change in posterior probability or likelihood caused by
a change in another parameter (e.g., Rannala 2002,
Swartz et al. 2004, Raue et al. 2013); thus, such param-
eters are strictly non-identifiable (Casella and Berger
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2002). However, we consider mostly cases wherein
parameters are “weakly” identifiable (e.g., Gelfand and
Sahu 1999, Gimenez et al. 2009), wherein the parame-
ters are correlated within an MCMC chain; that is, one
parameter’s values tend to track another’s values with
little change to posterior probabilities or likelihoods
(Rannala 2002, Carlin and Louis 2009). As a simple
example, if a linear model is specified with a random
effect that is added to an overall intercept term, a jump
in the intercept by one unit may be compensated for by
a jump in one unit, in the opposite direction, of the
random effect (see the specific example associated with
Eq. [1]).
In this paper, we specifically focus on cases that arise

largely from model implementation despite otherwise
reasonable models and data. Typical frequentist imple-
mentations or software packages solve such identifiabil-
ity problems by implementing constraints within the
analysis and software. For example, the lm and glm
functions for fitting linear and generalized linear models,
respectively, in R, employ “treatment coding” (also
referred to as “cell reference coding” or “treatment con-
trasts”) for fixed effects, whereby the effect associated
with a factor’s first level is constrained to zero (e.g.,
h1 = 0). This default coding achieves identifiability of
the fixed effects associated with a factor, and, inciden-
tally, results in a particular interpretation of effects
parameters whereby the factor’s first level is interpreted
as a reference level. Alternatively and commonly, con-
straining the factor level effects to sum to zero achieves
identifiability (“sum-to-zero coding” or “sum-to-zero
contrasts”) and a different interpretation of parameters.

These solutions partly motivate the implementation of
similar constraints within a Bayesian model.
While we have been aware of the aforementioned iden-

tifiability problems, in our own work and from working
with fellow ecologists as well as from the statistical liter-
ature and colleagues, we are unable to recommend a sin-
gle reference that addresses these problems in a concise
manner, accessible to ecologists. Together, these issues
motivate our current article, which collects results from
the broader scientific literature, tempered by our experi-
ences working with our own data and with our ecological
colleagues. In the course of our discussion, we review
common concepts and terminology, primarily associated
with linear mixed models, and offer advice for more gen-
eral situations. We use simulation experiments to illus-
trate issues and demonstrate solutions. In doing so, we
wish to make ecologists aware of important identifiabil-
ity issues associated with implementing hierarchical
Bayesian models involving random, fixed, or mixed
effects, and existing methods for addressing these issues.
Thus, this article is aimed at ecologists that have some
experience implementing, or anticipate implementing,
hierarchical or multi-level Bayesian models.

A BAYESIAN PERSPECTIVE ON FIXED VS. RANDOM EFFECTS

Whether frequentist or Bayesian, the essential statisti-
cal nature of random effects stems from their specifica-
tion as arising from a common probability distribution
whose parameters, to be estimated in some manner,
often, but not always, include just a single variance
parameter (Kutner et al. 2004, Gamerman and Lopes
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FIG. 1. Web of Science search results (search conducted 20 June 2019) illustrate the rise in popularity of random and mixed
effects models in ecological data analysis, especially Bayesian methods. Search keywords = ((random NEAR/1 effect*) OR (mixed
NEAR/1 effect*) OR (mixed NEAR/1 model*)), limited to the period 1990–2018 and refined by “Web of Science Cate-
gories” = “Ecology,” yielded 3,829 total records (gray circles + black diamonds). The search was repeated to partition the 3,829
records into those that included “Bayes*” in the topic or keywords, yielding 412 publications (gray circles) that we presume to have
employed Bayesian methods closely related to those discussed herein; the remaining 3,417 “other” records (black diamonds) likely
employed non-Bayesian methods or did not explicitly use Bayesian-related terms. It is worth noting that over 50% of the Bayesian-
focused publications occurred during the last five years (2014–2018).
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2006, Gelman and Hill 2007, Ramsey and Schafer 2013,
Gelman et al. 2014). In the context of random effects,
the units or group levels, i.e., experimental units, obser-
vational units, individuals, subjects, etc., such as a subset
of trees randomly selected from a multi-hectare plot, are
often viewed as exchangeable (Draper et al. 1993,
O’Neill 2009). In particular, the observed units (e.g.,
trees) are typically treated as conditionally independent,
arising from a common probability distribution
described by (conditional on), for example, variance
and/or covariance parameters that quantify variability
among the units. The assumption of exchangeability and
a common distribution often results in shrinkage (Gel-
man and Hill 2007, Qian et al. 2010, Ogle et al. 2019) of
a group of random effects (toward some value, often
zero) or, equivalently, partial pooling or borrowing of
strength (Gelman and Hill 2007, Carlin and Louis 2009,
Qian et al. 2010, Ogle et al. 2019) among a group of
effects (e.g., among individual trees, the group levels or
units, within the plot). And, the degree of partial pooling
among units is related to among unit (within group)
variability, with smaller variances allowing for the possi-
bility of stronger pooling (Gelman and Hill 2007, Ogle
et al. 2019). The exchangeability assumption allows for
inference about individuals (units or levels; e.g., individ-
ual trees) via individual-specific (random) effects or
about the population from which they came (e.g., the
forest represented by the plot) via a common distribu-
tion’s variance or covariance parameters (e.g., the
within-group variance terms). These different levels of
inference are often referred to as individual-based (or
conditional) inference or population-based (or marginal)
inference, respectively (in the case of linear statistical
models, at least) (Reid 1995, Wakefield 2013: Chapters 8
and 9).
Fixed effects are different. For frequentists, these are

fixed quantities to be estimated, with uncertainty being
inherited from the specification of a likelihood for the
data (e.g., McCulloch and Searle 2001). In many cases,
the number of fixed effects levels may be small and cho-
sen for specific reasons, as might occur in a manipulative
experiment (e.g., two levels of CO2: ambient vs. ele-
vated). In our experience, most Bayesians view fixed
effects as fixed, too, but characterize uncertainty more
directly via probability distributions, which are com-
pletely specified a priori (e.g., Gelman and Hill 2007).
There is often no notion of a larger unobserved popula-
tion of units; hence it often does not make sense to esti-
mate population-level variance parameters to
characterize variability among such a nonexistent set of
units (or levels). Consequently, the notion of exchange-
ability does not apply to fixed effects and they do not
exhibit shrinkage or borrowing of strength, frequentist
or Bayesian. As an aside, we acknowledge a connection
to shrinkage priors that are often employed to regularize
a problem (see Part IV in Wakefield 2013). With random
effects, however, we (should) specify an exchangeable
prior based on our beliefs, whereby shrinkage and

borrowing of strength are a consequence of our beliefs,
updated with data via the likelihood, and are not neces-
sarily a means to somehow regularize a problem.
While we can estimate fixed or random effects associ-

ated with observed units, with random effects, the scope
of inference extends beyond observed units to a popula-
tion of units, characterized by estimated variance/covari-
ance components or predictions of (random) effects of
unobserved units. For fixed effects, inference is generally
limited to the observed units (e.g., effect of ambient vs.
elevated CO2 on some response variable of interest). We
refer the reader to Gelman (2005) for additional discus-
sion about fixed vs. random effects from frequentist and
Bayesian perspectives.
To help make the above notions about fixed and ran-

dom effects more concrete, let us consider observations
yi (i = 1, 2, . . ., N) for which we specify a probability dis-
tribution, conditional upon µi, which is modeled as a
function of covariates and their effects, and µi is linked
to the mean of yi. To illustrate, let the yi be normally dis-
tributed with mean given exactly by µi, which we simplify
as a linear model of a single covariate, xi, with its (slope)
effect (b1) and an overall (intercept) effect (b0), a simple
linear regression model, so far. Further, assume observa-
tions are obtained for different species, s = 1, 2, . . ., S,
across different plots, p = 1, 2, . . ., P. In this context, we
consider species and plots to be units or levels for which
effects are considered for modeling as fixed or random.
It seems reasonable to remodel b0 and b1 to reflect our
sampling scheme among plots and species. For example,
consider the remodeled intercept to reflect additive main
effects of species and plot: b0,s(i) and ep(i); and, allow the
slope to vary by species: b1,s(i). The subscripts s(i) and
p(i) indicate species and plot, respectively, associated
with observation i. Thus, we write the mean as

li ¼ b0;sðiÞ þ b1;sðiÞxi þ epðiÞ: (1)

Our model may be seen as a traditional analysis of
covariance (ANCOVA), with additive main effects of a
species factor, with S levels, and a plot factor, with P
levels, and species-specific regression covariate effects.
We may also say that observations are grouped by spe-
cies and plots. Species and plots may be completely
crossed in the sense that every species occurs in every
plot, or vice-versa, but we make no such assumption in
what follows. Further, in our example, we consider plots
to be sampled from some larger population of plots, sug-
gesting ep as random effects, and we consider species
effects, b0,s and b1,s, as fixed. Thus, we have a mixed
model of random and fixed effects. Because µi is a func-
tion of random effects, it is common to say that the
mean is conditional on the random variables, ep for
p = 1, 2, . . ., P, allowing conditional or individual-based
(i.e., plot-based) inference via plot effects.
Continuing our example, we adopt the familiar nor-

mal specification for the random effects such that we
may assume ep ~ Normal(0, r2

e ). This assumes that the
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plots are exchangeable, which is a reasonable assump-
tion barring that no particular plot (or group of plots) is
associated with an unusually large or small effect (Dra-
per et al. 1993). The variance component, re, accounts
for variability among plots in the population, so called
population-based or marginal inference resulting from
marginalizing over the random effects, given re. The
specification also allows for borrowing of strength (Car-
lin and Louis 2009, Qian et al. 2010, Gelman et al. 2014)
among the plots (ep) given that they are assumed to arise
from a common distribution. In contrast, we would
likely treat the species-level effects, b0,s and b1,s, as not
arising from a common distribution, and thus, they
would not share population-level parameters, such as
variance terms. So far, in our example, our terminology
and modeling holds, whether frequentist or Bayesian,
with the understanding that a Bayesian specification of
a mean typically entails (implicitly) conditioning on fur-
ther quantities, which are, at some level, given their own
distributional specifications (e.g., priors). Toward this
end, we depart from the frequentist perspective and
specify a prior on the plot effects’ variance component
(r2

e) and the species-level fixed effects, b0,s and b1,s.
How do we pick priors for b0,s and b1,s? First, consider

a “generic” coefficient or parameter, h, that is indexed by
different units or levels of a factor, j = 1, 2, . . ., J (e.g., hj
could represent a species- or plot-specific effect).
Assume that we specify a normal distribution as a prior
for this parameter; in doing so, there are three primary
specifications that we may choose from:

hj �Normal ðm; vÞ; with fixed values specified
for the priormean ðmÞ and variance ðvÞ ð2Þ

hj �Normal ðm; vÞ;with priors specified for the

unknown m and v ð3Þ

hj �Normal ð0; v), with a prior specified for

the unknown variance vð Þ: ð4Þ

(We touch on non-normal analogies to Eqs. [2–4] in
subsequent sections.) We generally reserve the prior
defined by Eq. (2) for parameters that we view as fixed
effects (e.g., as might be done for treatment-level effects
associated with a manipulative experiment), and/or for
which the group size is exceptionally small (e.g., J = 2 or
3 levels); if we want a fairly non-informative prior, we
may set m = 0 and v = large value. Hence, in the context
of the previous example in Eq. (1), for species-specific
parameters, we would likely specify priors for b0,s and
b1,s according to Eq. (2). If, however, there are many spe-
cies (e.g., S ≫ 3), then we may choose a prior following
Eq. (3), whereby m would describe the mean effect (in-
tercept or slope) across all species, and v the variability
among species (e.g., Sauer and Link 2002, Kery and
Royle 2008, Price et al. 2009, Zipkin et al. 2009,

Ovaskainen and Soininen 2011, Ogle et al. 2013, 2014,
Foss-Grant et al. 2016). However, the hierarchical mod-
els defined by Eqs. (3 and 4) are typically reserved for
random effects (e.g., random site or plot effects). Eq. (4)
differs from Eq. (3) in that Eq. (4) assumes a mean of
exactly zero; we may refer to Eq. (4) as a zero-centered
hierarchical prior and Eq. (3) as a hierarchically centered
prior (e.g., Gelfand et al. 1995, Gilks and Roberts 1996).
Returning to the example associated with Eq. (1), we
may expect some plots to produce larger than expected
values for y (ep > 0), and others to produce smaller than
expected values (ep < 0), but across all plots, the plot
effects should be centered on a mean of zero, motivating
our choice of Eq. (4) for modeling ep.

THE IDENTIFIABILITY PROBLEM

We used the previous example to motivate relevant
terminology. However, to illustrate identifiability prob-
lems that can arise even in simple linear models such as
Eq. (1), let us first consider an even simpler model. As
before, assume that each yi arises from a normal distri-
bution, with mean µi and variance r2, but assume a sca-
lar intercept and slope such that

li ¼ b0 þ b1xi þ ejðiÞ: (5)

We interpret b0 as the overall intercept and ej as a ran-
dom effect for each group level j (for j = 1, 2, . . ., J, and
J < N), which we model according to Eq. (4): ej ~ Nor-
mal(0, r2

e). Assume that relatively non-informative pri-
ors are specified for b0 and b1, e.g., according to Eq. (2),
and that the two variance terms (r2 and r2

e ) are assigned
relatively non-informative, conjugate priors (Gelman
et al. 2014, Kruschke 2014) or semi-informative priors
that reduce the probability of unrealistically large values
(e.g., Gelman 2004, 2006, Lemoine 2019).
While we may be able to obtain analytical solutions for

the posterior distributions of the parameters in the above
model (e.g., b0, b1, e1, e2, . . ., eJ, r

2, and r2
e), most real

applications, however, involve models of greater complex-
ity, for which analytical solutions are not easily derived.
Thus, we typically use numerical simulationmethods such
as Markov chain Monte Carlo (MCMC) to sample from,
thus estimating, the joint and marginal posterior distribu-
tions of the parameters (Gamerman and Lopes 2006).
However, Eq. (5) is useful for illustrating potential issues
that plague models of varying complexity. For example, if
this model is implemented in a software package such as
OpenBUGS (Lunn et al. 2009) or JAGS (Plummer 2003,
2012), then the behavior of the MCMC chains can poten-
tially reveal an underlying identifiability problem (Gel-
fand et al. 1995, Eberly and Carlin 2000, Gelman and Hill
2007, Hines et al. 2014). We illustrate this via simulations,
which we elaborate upon below.
The non-identifiability of groups of random or fixed

effects, our focus here, may occur in tandem with the
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potential non-identifiability of the slope and intercept in
a linear model, which we touch on briefly. For example,
upon implementing the model in Eq. (5), it may be diffi-
cult to individually estimate b0 (intercept) and b1 (slope)
if the observed values of xi are “far from” zero, resulting
in potentially strong posterior correlation among b0 and
b1 (see Fig. 2). To address this problem, centering of xi
about its sample mean (x) and potentially standardizing
by its sample standard deviation (SD), giving zi = xi – x
or zi = (xi – x)/SD, respectively, and regressing yi on zi
results in a posterior correlation between b0 and b1 of
approximately zero (Gilks and Roberts 1996, Gelman
et al. 2014), enabling us to identify b0 and b1 (e.g., Gel-
fand et al. 1995; Fig. 2). That is, with covariate centering
or standardization, the MCMC chains for b0 and b1
move independently of each other.
Returning to the issue of the non-identifiability of b0

and the ej’s, it is easy to see that we can add a constant
to b0 and subtract the same constant from each ej (only
one of which contributes to the mean, li, for observation
i), thus resulting in the same value of µi, and, thus, the
same likelihood value and posterior density. In this
sense, b0 and ej are not identifiable or not individually
“estimable,” and the mean is over-parameterized (Carlin
and Louis 2009). We illustrate this identifiability prob-
lem with synthetic data based on the model in Eq. (5); in
our synthetic data, x is close to zero, so covariate center-
ing is not required (see Appendix S1: Fig. S1). We then
fit the model defined by Eq. (5) to the synthetic data
using JAGS, with standard and relatively non-informa-
tive priors for b0 (intercept), b1 (slope or x coefficient),
r2 (measurement error variance), and r2

e (random
effects variance). The synthetic data and code (R and
JAGS) are provided in Appendix S1 (Sections S1 and
S2).
The simulation experiment demonstrates that when

the random effects variance is small relative the mea-
surement error variance (i.e., for true values of r = 1
and re = r/10), the MCMC chains exhibit “text book”
behavior by showing excellent mixing and convergence
for all quantities monitored (see Fig. 3A, D, G, and J
for b0, b1, e, and one of the ej, respectively; where e is the
average of the ej’s). In this case, Eq. (4) acts like an
informative prior for the ej, such that the ej are estimated
to be close to the prior mean of zero, again, reflecting
strong borrowing of strength or shrinkage toward zero
(Gelman and Hill 2007), and leading to identifiability of
b0 and the ej. Here, b0 and e (or ej) are only moderately
correlated (Fig. 4A, D).
When the two variance terms are of similar magnitude

(i.e., for true re = r), the chains for some of the parame-
ters (e.g., b1; Fig. 3E), show similar mixing behavior as
described above. The chains for b0, e, and individual ej’s,
however, exhibit greater within chain autocorrelation,
but they still converge rather quickly (see Fig. 3B, H,
K). In this case, Eq. (4) acts like a moderately informa-
tive prior, and the borrowing of strength among the ej is
somewhat weaker. For the scenario involving a large

random effects variance (true re = 10r), the chains for
b1 behave similar to the first two scenarios (Fig. 3F), but
the chains for b0, e, and individual ej’s exhibit extremely
poor mixing and do not converge after 5,000 iterations
(Fig. 3C, I, L), despite model simplicity and otherwise
no apparent problem indicated by the model specifica-
tion. In fact, the chains for b0 (Fig. 3C) look like mirror
images of the e chains (Fig. 3I). This trade-off between
b0 and e (or ej) is revealed in the bivariate scatter plot
(Fig. 4C, F) whereby the MCMC samples for b0 and e
are nearly perfectly negatively correlated. That is, when
re is very large, Eq. (4) acts like a non-informative prior
for the ej, with very little to no borrowing of strength,
thus allowing the MCMC chains for the ej to move away
from the prior mean of zero. This latter scenario illus-
trates our broader perspective of near non-identifiabil-
ity: changes in one quantity (e.g., b0) are compensated
by changes in another (e.g., e and/or individual ej), while
their sum (e.g., b0 + e, the “overall” intercept; Fig. 3M,
N, O) and the posterior probability remains relatively
unchanged. Nearly identical results were obtained when
the models were implemented in OpenBUGS (see
Appendix S1: Fig. S2 and Table S1).
The potential non-identifiability of b0 and the ej is sup-

ported by analysis of a simpler model only involving an
overall intercept plus a random effect (i.e., no covariate
effect) (Gelfand et al. 1995, Gilks and Roberts 1996), with
a flat prior on the overall intercept; under this model, the
correlation between b0 and any particular ej is

qb0;ej ¼ � 1þNr2

Jr2
e

� ��1
2

: (6)

If, for example, the sample size N = 100 and the group
size J = 10 (as in the above simulations; e.g., Figs. 3, 4),
this correlation, Eq. (6), is close to zero (never positive)
if re � r, and it approaches �1.0 as re approaches 10r
(see Appendix S1: Fig. S3). This is consistent with the
bivariate plots in Fig. 4, which also suggest that the cor-
relation is even stronger between b0 and e (compared to
individual ej).
So, why does moderate to strong correlation among

parameters (e.g., b0 and ej) lead to poor mixing and/or
near non-identifiability? Many MCMC sampling algo-
rithms, such as most of the univariate algorithms in
JAGS or OpenBUGS, move through the posterior
parameter space by taking steps in the direction of each
parameter’s coordinate axes, one parameter at a time, to
a new coordinate value that is associated with a some-
what minor change in the posterior density. Correlation
and/or near non-identifiability among parameters cause
long, narrow regions or “ridges” in the parameter space
wherein the posterior is concentrated (Omlin and Reich-
ert 1999, Swartz et al. 2004, Hines et al. 2014). Thus,
moving too much in a coordinate axes direction can
quickly send the sampling algorithm up/down a steep
posterior cliff, and sampling steps are made small to
avoid this, which is revealed in chains that move slowly
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FIG. 2. (A) Data were simulated from yi ~ Normal(li, r
2) for i = 1, 2, . . ., 100, li = b0 + b1xi, and xi ~ Uniform(100, 110),

with b0 = 1, b1 = 2, and r = 1. A Bayesian model was applied to the synthetic data with priors b0, b1 ~ Normal(0,1 9 106) and
r–2 ~ Gamma(0.1, 0.1) using (A, C, E) the original x data with li = b0 + b1xi or (B, D, F) centered x data with
li ¼ b�0 þ b1ðxi � xÞ; note, in the covariate-centered version, the original intercept is computed as b0 ¼ b�0 � b1x. Without covari-
ate centering, the Markov chain Monte Carlo (MCMC) chains for (A) the intercept (b0) and (C) the slope (b1) show poor mixing
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(poor mixing), as in Fig. 3C. Algorithms that move
groups of parameters simultaneously, such as Hamilto-
nian Monte Carlo (HMC; Neal 2011, Monnahan et al.
2017) or other block-wise samplers, are expected to show
improved mixing as they can usually take “larger” steps
in the multivariate parameter space. While our practical
experience using OpenBUGS has often revealed that
mixing does not improve, or can even be worse, when
block samplers are automatically selected, the HMC
methods employed by Stan have generally proven more
successful (e.g., Monnahan et al. 2017). In fact, when we
implemented the model based on Eq. (5) in Stan (see
code in Appendix S1: Section S6), mixing and conver-
gence notably improved compared to the JAGS and
OpenBUGS simulations, even for large re (see
Appendix S1: Fig. S4 and Table S1). While non-identifi-
ability of b0 and ej (or e) is not obvious for large re,
based on visual inspection of the history plots (see
Appendix S1: Fig. S4C, I, L), the HMC chains possess
greater within chain autocorrelation, requiring a greater
number of iterations to effectively sample the posterior
parameter space, compared to scenarios with smaller re

(see Appendix S1: Table S1).
Moreover, while the HMC methods employed by Stan

can greatly improve mixing and convergence, the actual
posterior correlation (e.g., Eq. [6]) among pairs of
parameters is unaffected, regardless of the algorithm
used. However, block samplers such as HMC move
parameters in accordance with this correlation structure,
increasing their efficiency. For example, evaluation of
the Stan output reveals that b0 and ej (or e) are still non-
identifiable, especially for large re. Bivariate scatter plots
of the posterior samples of b0 vs. ej (or vs. e) obtained
from Stan reveal that b0 and ej (or e) are still highly cor-
related for large re such that a change in ej (or e) can
entirely compensate for a change b0 (see Appendix S1:
Fig. S5), and the range of b0 values explored by the
HMC sampling algorithm is very wide (Appendix S1:
Figs. S4C, S5 and Table S1).
Note that, by specifying the zero-centered hierarchical

prior for the random effects, ej ~ Normal(0, r2
e), this

implies that we might expect or want the overall mean
or average, e, to be exactly zero. Returning to our simu-
lation results, in all three re scenarios, the posterior
mean for e is not exactly zero (see Table 1 and Fig. 3G–
I), regardless of the software or sampling algorithm used
(Appendix S1: Table S1), alluding to potential non-iden-
tifiability of e and individual ej. For large re (re = 10r),
the central posterior 95% credible interval (CI) for e

spans a wide range of values, from about �5 to 5 (the
simulated y data span �17 to 23; Table 1 and
Appendix S1: Table S1). A small re (re = r/10) results
in a 95% CI for e that only spans �0.20 to 0.19, but e is
still never exactly zero (Table 1). Why is this? The zero-
centered hierarchical prior for ej is simply that: a prior.
While the prior means are E(ej) = 0 and E(e) = 0, the
marginal or conditional posterior means are not neces-
sarily restricted to zero. For example, based on a simple
model only involving an overall intercept and random
effects, again, no covariate effects, such that li = b0 + ej,
regardless of the priors chosen for b0, r, and re (i.e.,
conditional on these quantities), the analytical solution
for the conditional posterior mean of e is

Eðejb0; r; re; yÞ ¼
b0 � y

1þ r2
r2e

1þ N
J

� � : (7)

Eq. (7) does not evaluate to exactly zero; it is affected
by the sampled values of b0 and the magnitude of re rel-
ative to r. In the unlikely event that an MCMC sample
gives b0 exactly equal to the overall mean of the data
(i.e., y, the average of the group-level sample means, yj),
then the posterior mean for e evaluates to zero. Other-
wise, the posterior mean approaches zero only for b0
very close to y or for a small random effects variance, r2

e
(i.e., as b0 ? y and/or r2/r2

e ? ∞, E(e|b0,r,re,y) ? 0).
That is, when r2

e is relatively large (weak to no borrow-
ing of strength), the mean of the random effects can be
far from zero, and for a given value of r2/r2

e , the devia-
tion from zero is controlled by the value of b0, further
pointing to the non-identifiability of b0, ej, and e.

SOLUTIONS TO THE IDENTIFIABILITY PROBLEM

The above examples and associated identifiability
problems are well known among applied statisticians,
but their details may not be discussed in an applied
statistics course typically taken by ecologists. In the con-
text of Eqs. (1 and 5), more information is needed to
estimate or identify the parameters (i.e., b0 [or b0,s] and
ej [or ep]), which typically comes from a constraint on
the parameters. Frequentist analyses build-in such con-
straints, which can also be used within a Bayesian model
to solve this identifiability problem (we elaborate on this
shortly). In this section, we outline multiple solutions,
including use of more informative priors and imposing
constraints in the form of reparameterizing the original
model and/or implementing coding solutions.

and (E) are highly correlated (r ffi �1.000); due to high within chain autocorrelation (see A and C), the Raftery and Lewis (1996)
diagnostic indicates that over 635,000 MCMC samples are required for accurate 95% credible intervals (CIs). Covariate centering
greatly improves mixing of (B) the “new” intercept (b�0) and (D) b1 and results in (F) uncorrelated posterior samples of b�0 and b1
(r ffi 0.005), and only requires ~ 3,800 MCMC samples (due to lack of within chain autocorrelation, see B and D). The dashed ver-
tical and horizontal lines in (E) and (F) are the “true” values used to simulate the data.

(Fig. 2. Continued)
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FIG. 3. History plots of the MCMC samples for parameters associated with the model in Eq. (5), fit to synthetic data. That is,
for yi ~ Normal(b0 + b1 xi + ej(i), r

2) and ej ~ Normal(0, r2
e ), data were generated from true values of b0 = 1, b1 = 2, r = 1, and

for re = 0.1 (left column), re = 1 (middle column), and re = 10 (right column). The random effects regression model, with a
Gamma(0.1, 0.1) prior for r�2 and r�2

e , was in-turn fit to the synthetic data in JAGS to obtain posterior samples of parameters,
including (A–C) b0, (D–F) b1, (G–I) the mean of the random effects, e, (J–L) an individual random effect (ej, for j = 4), and (M–O)
the identifiable overall intercept (b�0 ¼ b0 � e). The history plots for all quantities show excellent mixing and convergence for the
scenario with a small random effects variance (re = 0.1; left column), but for large re, b0, e, and ej exhibit very poor mixing and
lack of convergence by iteration 5,000 (C, I, and L, respectively); b1 and b�0 exhibit excellent mixing and convergence behavior,
regardless of the value of re. Differences in mixing and within-chain autocorrelation lead to differences in the number of posterior
samples required for inference; based on Raftery and Lewis (1996), 13,200, 77,200 and 1,016,392 samples are required when
re = 0.1, 1, and 10, respectively.
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Specification of more informative priors

A potentially easy solution to reducing the posterior
correlation between, and thus enabling estimation of,
the overall intercept (b0) and the additive random effects
(ej’s) is to specify more informative priors for b0 and/or
re. Recent work suggests use of at least weakly informa-
tive priors for random effects variance terms (e.g., re)
that result in greater shrinkage of the random effects
(e.g., ej terms) toward their prior mean (e.g., toward 0 as
per Eq. [4]) while reducing the likelihood of unrealisti-
cally large values of re (Gelman 2006, Lemoine 2019).
For the simple random effects regression in Eq. (5),
Lemoine (2019) recommends using a Cauchy(0,1) prior,
folded at zero, for re (see also, Gelman 2006). While the
use of a folded Cauchy(0,1) prior did shrink the mar-
ginal posterior for re toward smaller values (compare
Table 1 vs. Appendix S1: Table S2, for scenario
re = 10r), it did not notably improve mixing or conver-
gence of the MCMC chains (see Appendix S1: Fig. S6).

Much more informative priors would be required for re

and/or b0 to improve MCMC behavior and to facilitate
identification of b0 and the ej terms (and e).
Thus, when prior information is available to construct

such informative priors, we agree that such information
should be leveraged (Hobbs and Hooten 2015), partly to
address potential identifiability issues. For example, as
demonstrated by the examples summarized in Table 1
and Fig. 3, pseudo-identifiability can be achieved if the
prior(s) restrict re to small values relative to r. It is com-
mon, however, for one to lack relevant and objective
information for imposing informative priors, especially
for parameters describing random effects; informative
priors are more likely to be developed for population-
level parameters describing biologically relevant quanti-
ties that can be directly measured (Gelman et al. 1996).
Use of informative priors is not the focus of this paper,
and we direct readers to other papers that focus on
application of informative priors (e.g., Gelman et al.
1996, Rivot et al. 2001, Gelman 2006, Gelman et al.

FIG. 4. Posterior results associated with the simulation described in Fig. 3. As in Fig. 3, the random effects regression model
was fit to the synthetic data to obtain posterior samples of parameters. Bivariate scatterplots of the posterior MCMC samples are
shown for the random effects mean (e) vs. the intercept (b0) (top row) and for an individual random effect (ej, for j = 4) vs. b0 (bot-
tom row). Note that the correlation between e (or ej) and b0 becomes stronger as re (random effects variance component [SD])
increases relative to the observation variance (SD, r = 1) such that for re = 0.1, (A) r = �0.72 and (D) r = �0.32; for re = 1, (B)
r = �0.93 and (E) r = �0.62; and, for re = 10, (C) r = �1.00 and (F) r = �0.99.
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2008, Choy et al. 2009, Delean et al. 2013, Morris et al.
2013, Morris et al. 2015, Thorson and Cope 2017,
Lemoine 2019). Thus, in many cases, one may opt for
approaches that impose constraints on the parameters
via reparameterizing the original model and/or imple-
menting coding solutions, which we outline in the fol-
lowing subsections. Though, these solutions can
certainly be combined with use of informative or weakly
informative priors.

Reparameterization or coding solutions

We draw upon the literature to summarize four poten-
tial solutions to the aforementioned identifiability prob-
lem. The first solution is to hierarchically center the
random effects around the global intercept (Gelfand
et al. 1995), effectively assigning a hierarchical prior fol-
lowing Eq. (3), thus abandoning Eq. (4). However, this
solution is limited to models involving single or nested
random effects. Thus, one may draw upon other

reparameterization approaches that are more generally
applicable. The second and third solutions are motivated
by Gilks and Roberts (1996) and involve imposing sum-
to-zero constraints on the random effects, or employing
“reparameterization by sweeping” with the sum-to-zero
constraint. The fourth solution involves “post-sweeping
of random effects” as described in Gelman and Hill
(2007). The last three solutions employ a zero-centered
hierarchical prior akin to Eq. (4), but they result in the
group of identifiable random effects having both a prior
mean and posterior mean of zero (i.e., e = 0 exactly, for
every MCMC iteration).

Solution 1: Hierarchical centering.—Consider models
involving a scalar intercept and an additive random
effect, such as Eq. (5). We can simply combine the inter-
cept and random effects such that Eq. (5) can be rewrit-
ten as µi = aj(i) + b1xi. Then, we assign a hierarchically
centered prior to aj following Eq. (3) such that aj ~
Normal(b0, r2

e) (Gelfand et al. 1995, Gilks and Roberts

TABLE 1. Posterior estimates (mean and 95% credible interval in parentheses) for the parameters in the random effects linear
regression, Eq. (5), based on synthetic data described in Fig. 3, and using a relatively non-informative Gamma(0.1, 0.1) prior for
r�2
e .

Parameter, true value, and approach

Random effects variance scenario

re = 0.1r = 0.1 re = r = 1 re = 10r = 10

b0, true value = 1
Orig. 1.042 (0.779, 1.309) 0.939 (0.439, 1.432) 0.921 (�3.991, 5.801)
HC 1.039 (0.770, 1.305) 0.939 (0.428, 1.457) 0.912 (�3.912, 5.851)
SZ 1.039 (0.858, 1.224) 0.938 (0.751, 1.129) 0.896 (0.699, 1.094)
PS 1.039 (0.854, 1.223) 0.936 (0.748, 1.124) 0.896 (0.700, 1.093)

b1, true value = 2
Orig. 1.978 (1.914, 2.042) 2.002 (1.935, 2.068) 1.955 (1.886, 2.025)
HC 1.978 (1.915, 2.043) 2.002 (1.935, 2.069) 1.955 (1.886, 2.025)
SZ 1.978 (1.914, 2.043) 2.002 (1.934, 2.069) 1.955 (1.886, 2.024)
PS 1.978 (1.913, 2.043) 2.002 (1.937, 2.068) 1.956 (1.887, 2.025)

r, true value = 1
Orig. 0.935 (0.812, 1.079) 0.959 (0.829, 1.116) 0.995 (0.860, 1.156)
HC 0.935 (0.811, 1.080) 0.958 (0.827, 1.116) 0.995 (0.861, 1.155)
SZ 0.934 (0.811, 1.079) 0.961 (0.828, 1.115) 0.996 (0.861, 1.158)
PS 0.935 (0.813, 1.082) 0.959 (0.829, 1.115) 0.995 (0.860, 1.154)

re, true value varies (see columns)
Orig. 0.289 (0.152, 0.529) 0.720 (0.395, 1.261) 7.410 (4.677, 12.305)
HC 0.289 (0.155, 0.529) 0.721 (0.401, 1.254) 7.411 (4.683, 12.253)
SZ 0.272 (0.148, 0.494) 0.713 (0.386, 1.259) 5.940 (3.745, 9.892)
PS 0.291 (0.155, 0.542) 0.722 (0.398, 1.268) 7.474 (4.705, 12.410)

e, true value = 0
Orig. -0.001 (�0.199, 0.192) -0.002 (�0.462, 0.466) -0.024 (�4.902, 4.882)
HC 0.001 (�0.197, 0.198) -0.001 (�0.487, 0.477) -0.016 (�4.947, 4.816)
SZ 0 0 0
PS 0 0 0

Notes: The “true value” is the parameter value used to generate the synthetic data. Italicized CIs do not contain the true value,
which only occurs for some instances of re. Approach is Orig., original without addressing identifiability issues; HC, hierarchical
centering (Solution 1); SZ, sum-to-zero constraints for random effects (Solution 2); and, PS, post-sweeping of random effects
(Solution 4, where b0 is reported as the identifiable b�0). Results are not provided for reparameterization by sweeping (Solution 3)
because one would typically choose one of the less technical and computationally faster solutions (i.e., Solutions 1, 2, or 4). See
Appendix S1 for results obtained with OpenBUGS (Appendix S1: Fig. S2 and Table S1), Stan (Appendix S1: Fig. S4 and Table S1),
and JAGS using a folded-Cauchy(0,1) prior for re (Appendix S1: Fig. S6 and Table S2).

Article e02159; page 10 KIONAOGLE AND JARRETT J. BARBER
Ecological Applications

Vol. 30, No. 7



1996). Thus, aj is the identifiable group-specific intercept
(i.e., aj = b0 + ej), and b0 and r2

e are still interpreted as
the overall intercept and the random effects variance,
respectively. Many examples of hierarchically centered
random effects can be found in the ecological literature,
including, but certainly not limited to, species effects
centered on higher taxonomic-level effects or global
effects (Price et al. 2009, Zipkin et al. 2009, Coomes
et al. 2011, Ogle et al. 2014, Tobler et al. 2015, Foss-
Grant et al. 2016, Rich et al. 2017, Wooliver et al. 2017),
plot effects centered on treatment-level or global effects
(HilleRisLambers et al. 2009, Barker et al. 2014), and
individual effects centered on global effects (Thomas
et al. 2006, Kropp and Ogle 2015, Peltier et al. 2016).
Reparameterization by hierarchical centering does not

alter the underlying statistical model, but it allows us to
identify b0 (compare Fig. 5B to 4A) and individual ej,
which are computed as ej = aj – b0 (results not shown).
However, the 95% CI for b0 is comparable to the original
non-identifiable model (compare Orig. and HC results
in Table 1), indicating that the precision of b0 is gener-
ally not improved by this solution. Moreover, this
approach only works when the random effects (e.g., spe-
cies, plot, or individual effects) can be centered on the
overall intercept (e.g., genus, order, treatment-level, or
global effects). See Extensions for an overview of how to
extend hierarchical centering to a situation involving

multiple, nested random effects (e.g., plot within water-
shed random effect plus a watershed random effect).
Conversely, consider the first example, Eq. (1), which
involves a species-specific intercept (fixed factor) and
additive plot random effects. Recall that it is unlikely
that we can treat plots as being nested within species;
species and plot are more likely to be crossed factors.
Thus, we are forced to work with the original model
specification where µi = b0,s(i) + b1,s(i)xi + ep(i). In situa-
tions involving crossed effects, whether fixed or random,
hierarchical centering is not appropriate, and we draw
upon one of the other potential solutions.

Solution 2: Sum-to-zero constraint.—For the simple lin-
ear model with one group of random effects, as in
Eqs. (1 or 5), this solution effectively treats J � 1 of the
ej’s as stochastic and assigns each a hierarchical prior
according to Eq. (4); the remaining (one), say eJ, is set
equal to minus the sum of the other J – 1 ej such that

ej �Normal(0,r2e ) for j¼ 1; 2; � � � ;J � 1

eJ ¼ � PJ¼1

j¼1
ej :

(8)

Clearly, this ensures that the sum, and hence the aver-
age of the random effects (e), is always equal to zero.
Because the average is fixed at zero and no longer trades-

FIG. 5. History plots of the MCMC samples for the overall intercept (b0 or b
�
0) associated with the model in Eq. (5), fit to syn-

thetic data (see Figs. 3, 4). Results are only shown for the case involving a large random effects variance (re = 10r) for (A) the orig-
inal, non-identifiable parameterization (same as Fig. 3C); (B) the hierarchically centered version such that li = aj(i) + b1�xi and
aj ~ Normal(b0, r2

e ); (C) sum-to-zero constraints applied to the random effects, where µi = b0 + b1xi + ej(i), ej ~ Normal(0, r2
e ) for

j = 1, 2, . . ., J�1, and eJ ¼ �PJ�1
j¼1 ej ; and (D) post-sweeping of the random effects such that the identifiable intercept (plotted

here) is computed as b�0 ¼ b0 þ e. The black horizontal dashed line is the true value of b0 (or b
�
0) that was used to generate the syn-

thetic data. The y-axes are scaled differently (wider) in panels A and B compared to C and D, and the horizontal gray dotted lines
in A and B denote the y-axes range in C and D. Based on Raftery and Lewis (1996), (A) 830,500, (B) 4,300, (C) 3,800, and (D)
3,900 samples are required to obtain accurate 95% CIs for the intercept (b0 or b

�
0).
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off with the overall intercept (b0), this leads to identifiable
random effects and overall intercept. We applied this con-
straint to the simulated data example, and the posterior
results are given in Table 1. This solution resulted in pos-
terior estimates for all quantities that agree with the true
values (the truth is contained in the 95% CIs), with the
exception of re, which was slightly underestimated for
true re = 0.1 and slightly overestimated for true re = 10
(though, a folded Cauchy(0,1) prior resulted in a more
accurate estimate of re for true re = 10; see Appendix S1:
Table S2). Importantly, the sum-to-zero constraint results
in notable improvements in mixing and convergence of
the MCMC chains (e.g., compare Fig. 5C to A), and the
95% CI for b0 is notably narrower (more precise) than the
original and hierarchical centering approaches (compare
SZ to Orig. and HC results in Table 1). The sum-to-zero
solution, Eq. (8), however, is not appropriate for small
group sizes (e.g., J < 5 or 10), as discussed in Solution 3:
Reparameterization by sweeping.

Solution 3: Reparameterization by sweeping.—As dis-
cussed in Gilks and Roberts (1996), the sum-to-zero con-
straint, Eq. (8), essentially “sweeps” the mean of the
random effects (e) out of the random effects (ej) and into
the overall mean or intercept (e.g., b0). This simple sum-
to-zero constraint works well for large group sizes
(roughly, J > 10), but the independent normal assump-
tion for the J � 1 ej terms is unreasonable for small J.
Consider the extreme example where J = 2. If we employ
sum-to-zero for e1 and e2, then e1 = –e2, exactly. That is,
e1 and e2 are perfectly, negatively correlated. In general,
the sum-to-zero constraint results in negative correla-
tions among the ej terms, and the strength of this corre-
lation increases with smaller J. Gilks and Roberts (1996)
give an analytical solution for the correlation among
pairs of such constrained random effects, which leads to
modeling the vector of J � 1 ej terms as coming from a
multivariate normal distribution with a covariance
matrix (Σ) that explicitly accounts for the induced corre-
lation among the ej terms, giving Solution 3:

e�J �NormalJ�1ð0;RÞP
j;k ¼ � r2

e
J j 6¼ k and

P
j;j ¼ r2

e

eJ ¼ � PJ�1

j¼1
ej ;

(9)

where e�J is the vector of all J � 1 random effects, that
is, excluding the “last” (Jth) random effect, and Σj,k
denotes element (j, k) of the covariance matrix; the last
effect, eJ, is obtained by the sum-to-zero constraint. As J
gets very large (as J ? ∞), the covariance, Σj,k, among
any pair of random effects, ej and ek, goes to zero (un-
correlated), and we can fall back on the simple sum-to-
zero solution. Application of Eq. (9) should thus lead to
unbiased estimates of r2

e.
The sum-to-zero constraint and associated sweeping

of the random effects mean (Solution 3, Eq. [9]) requires
some additional coding steps upon implementation in

software such as OpenBUGS, JAGS, or Stan (or via
one’s own custom MCMC routine). In particular, we
must define the covariance matrix (Σ) in addition to the
sum-to-zero constraint, and evaluation of the multivari-
ate normal prior in Eq. (9) requires inversion of the
(J � 1) 9 (J � 1) covariance matrix, which becomes
computationally burdensome for increasing J. For large
J, however, we may simply use sum-to-zero, see Eq. (8),
as an fast approximation, which improves with increas-
ing J. However, if random effects are thought to be cor-
related, independent of correlations caused by the sum-
to-zero constraint, as might occur for spatial or tempo-
ral random effects, a multivariate model, different from
Eq. (9), would likely be required. Discussion of spatially
or temporally correlated random effects, leading to non-
exchangeability, is beyond the scope of this paper, and
can be found elsewhere (e.g., Wikle 2003, Banerjee et al.
2004, Latimer et al. 2009, Finley 2011, Kang and Cressie
2011, Ver Hoef et al. 2018, Wikle et al. 2019).

Solution 4: Post-sweeping of random effects.—This solu-
tion retains the original parameterization involving
the non-identifiable intercept and random effects.
However, these non-identifiable quantities are only
used to compute relevant identifiable quantities that
we store, monitor, evaluate, summarize, and report.
There is no need to monitor or store the non-identifi-
able quantities, and they should not be involved in
our assessment of mixing and convergence. Following
the example in Eq. (5), we compute the identifiable
intercept (b�0) and random effects (e�j ) as

e�j ¼ ej � e for j ¼ 1; 2; � � � ; J; where e ¼ 1
J

XJ
j¼1

ej :

b�0 ¼ b0 þ e ð10Þ

That is, we subtract (“sweep out”) e from the non-
identifiable ej’s to obtain the identifiable e�j , and we add
(“sweep in”) e to the non-identifiable intercept to obtain
b�0. This results in adding and subtracting e (a constant)
to the model for µi (net change of zero) such that the
mean, µi, is not affected. We specify the original, zero-
centered hierarchical prior for the non-identifiable ej fol-
lowing Eq. (4), and we retain the original prior for the
non-identifiable b0, likely following Eq. (2). The average
of the e�j terms is always zero (i.e., e� ¼ ð1=JÞPJ

j¼1

e�j ¼ 0), and they thus have the typical intuitive interpre-
tation as deviations from the global mean (b�0 + b1�xi).
The identifiable terms are considered derived quanti-

ties and their solutions can be programmed directly into
the model code (e.g., using OpenBUGS, JAGS, or Stan)
or computed outside of the model code using the
MCMC output (e.g., coda object; Plummer et al. 2006)
that contains the non-identifiable b0 and ej. Either way,
we evaluate burn-in and convergence of the identifiable
quantities. Based on the simulation experiment, relative
to the non-identifiable model (Figs. 3, 5A), mixing and
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convergence of the identifiable quantities (Fig. 5D) pro-
duced by Solution 4 are much improved and comparable
to Solutions 1 (Fig. 5B) and 2 (Fig. 5C). Often, imple-
mentation of the intentionally non-identifiable model, as
per Solution 4, can help to improve mixing and conver-
gence of the desired identifiable quantities and lead to
relatively precise estimates (see Table 1).
In general, introducing auxiliary quantities or nui-

sance variables, identifiable or not, can aid mixing
(Gelfand et al. 1995, Gelman 2004). As another exam-
ple of an intentionally non-identifiable model, see
parameter expansion techniques (e.g., Gelman 2004,
2006, Gelman and Hill 2007), which may be employed
to improve mixing and convergence of hierarchically
centered effects, Eq. (3), associated with a small vari-
ance component (e.g., small re). In such situations,
the MCMC chains for re can get stuck near zero
(“zero variance trap”), and the corresponding random
effects (e.g., ej or aj terms) will likely exhibit strong
within chain autocorrelation and poor mixing (e.g.,
“flat lining”). Parameter expansion introduces addi-
tional, intentionally non-identifiable quantities (redun-
dant parameters) that facilitate greater movement (and
mixing) of the MCMC chains (for re, ej, or aj).
Again, we ignore the non-identifiable quantities and
focus our inference on the identifiable quantities (e.g.,
re and ej or aj).

When to implement which solution?.—As illustrated by
the simulation experiment, all three of the solutions (1,
2, and 4) highlighted in Fig. 5 and Table 1 resulted in
improved mixing and convergence of the MCMC
chains. Compared to the original, non-identifiable ver-
sion, Solutions 2 and 4 also produced more precise
(narrower 95% CIs) and more accurate (95% CIs con-
tained the true value) estimates of the quantities that
are susceptible to non-identifiability, especially when
re ≫ r (Table 1). The sum-to-zero constraint (Solu-
tion 2), however, yielded a posterior for re that is
noticeably, but not statistically, different (here, lower
and narrower 95% CI) from the posteriors produced
by all other solutions (Table 1). This difference partly
reflects the fact that the sum-to-zero constraint pro-
duces dependent random effects, thus producing a
biased estimate of re (Gilks and Roberts 1996). Here,
re is interpreted as the super-population (the popula-
tion from which the sampled levels came from) stan-
dard deviation (Gelman 2005, Gelman and Hill 2007).
One may also be interested in computing the finite-
population (the specific levels sampled) standard devia-
tion, se, which will generally have a more precise esti-
mate (Gelman and Hill 2007), and should be consistent
among the different approaches. For example, in the
simulation with a large random effects variance
(re = 10r), the estimates of se were nearly identical
among the four approaches summarized in Table 1,
with a posterior mean and 95% CI of 6.86 (6.50, 7.06).
It is straightforward to compute se in the model code

as the standard deviation of the ej’s or e�j ’s (Gelman
and Hill 2007), and one may want to report se in addi-
tion to or in lieu of re (Gelman 2005).
So, which solution should one use? If we simply

wish to improve mixing and convergence, we may
opt to implement our models in software such as
Stan given its ability to efficiently sample the multi-
variate parameter space. If we also wish to sepa-
rately identify the overall intercept and groups of
random effects and to interpret the random effects
as deviations from the overall mean, we may want
to employ one of the aforementioned solutions (1,
2, or 4), potentially in combinations with informa-
tive priors. If we employ a model with a single
group of additive random effects or multiple groups
of additive random effects that can be nested within
each other, in general, the preferred solution is to
employ hierarchical centering (Solution 1). This
solution is easy to code and relatively fast compared
to the other solutions. We summarize our recom-
mendations in Fig. 6.
In more complex situations involving, for example,

multiple groups of random effects that are not nested
(see Extensions), we should consider one or more of the
latter three solutions. For a particular model, we would
recommend using the same solution for all groups of
random effects, for consistency. And, for a particular
model, we might try one of two (or both) appropriate
solutions. If the group size, Jg, associated with each
group g = 1, 2, . . ., G of random effects (e.g., plots, time
periods, etc.) is large (e.g., Jg ≫ 10 for all g), then one
could employ the sum-to-zero constraint or post-sweep-
ing for each group of random effects. Both of these
solutions are easy to code and faster than reparameteri-
zation by sweeping. If all or some group sizes are com-
paratively small (e.g., Jg ≤ 5 for one or more g), then
the basic sum-to-zero constraint is inappropriate, leav-
ing reparameterization by sweeping and post-sweeping
as options. In practice, however, the former is more
challenging to code, requires specification of the covari-
ance matrix (Σ) in Eq. (9), and leads to slower MCMC
simulations. In summary, while we have used all four of
these solutions, our experience has led us to prefer Solu-
tion 4 (post-sweeping of random effects), which, again,
is easy to code, works for J (or Jg’s) large or small, and
MCMC simulation speed is not notably impacted.
Though, the choice of which solution to use may be
problem specific, and dictated by convergence and mix-
ing diagnostics.
We provide example code illustrating application

of hierarchical centering (Solution 1), sum-to-zero
constraint (Solution 2), and post-sweeping of ran-
dom effects (Solution 4) in Appendix S1: Section S3.
We do not provide code for reparameterization by
sweeping (Solution 3) given that we generally do
not recommend this solution (see above discussion).
Again, we note that these reparameterization or
coding solutions can be combined with specification
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of informative priors (e.g., Lemoine 2019), when
appropriate.

Extensions

Here we outline approaches to dealing with common
modeling situations involving mixed effects, multiple
groups of nested random effects, multiple groups of
non-nested random effects, multiplicative random
effects, and multiple groups of fixed effects.

Additive fixed and random effects.—Let us return to the
mixed effects model in Eq. (1), which assumes an inter-
cept that varies by some group level s (e.g., b0,s where s
could refer to species) plus additive random effects for
level p of another group (ep, where p could refer to plot).
We have already discussed the types of priors that we
would assign to the fixed effects, b0,s, and the random
effects, ep. In this example, since plot and species are
likely crossed, we would employ Solutions 2 (sum-to-
zero), 3 (reparameterization by sweeping), or 4 (post-

sweeping). If we choose Solution 4, we would simply
compute the identifiable random effects and fixed effect
intercepts as e�p ¼ ep � e (for all p) and b�0;s ¼ b0;s þ e
(for all s), respectively.

Multiple groups of nested random effects.—Consider the
following model that extends Eq. (5) to include two
additive random effects, where one group (e.g., plot,
p = 1, 2, . . ., Pw) is nested in the other (e.g., watershed,
w = 1, 2, . . ., W). This notation indicates there are Pw

plots in watershed w. (Pw can be different for each w; we
are not restricted to balanced designs.) The mean model
might look like

li ¼ b0 þ b1xi þ epðiÞ;wðiÞ þ cwðiÞ; (11)

where p(i) and w(i) are the plot and watershed associated
with observation i, respectively. This formulation explic-
itly includes plot and watershed random effects, ep,w and
cw, which are added to the overall (global) intercept, b0.
Staying with the parametrization in Eq. (11), one would
assign hierarchical priors to ep,w and cw following Eq.

FIG. 6. Flowchart summarizing our recommendations for selecting solutions to address potential identifiability and/or mixing
and convergence problems associated with a hierarchical Bayesian model involving one or more groups of fixed or random effects.
Solution 1 is hierarchical centering, Solution 2 is sum-to-zero constraint, Solution 3 is reparameterization by sweeping, and Solu-
tion 4 is post-sweeping of random effects. For boxes with multiple solutions, solutions shown in boldface type are the preferred
solutions. HMC, Hamiltonian Monte Carlo.
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(4), with variances r2
e and r2

y, respectively. This additive
model, however, creates non-identifiability among b0,
ep,w, and cw; again, b1 is identifiable because it is the
coefficient on the (centered or standardized) covariate,
x, which is assumed to vary among observations.
Assuming plots are nested in watersheds, then the identi-
fiability problem can be solved by hierarchical centering
via a multi-level hierarchical model (Gelman and Hill
2007). That is, rewrite the mean model as li = Bp(i),w(i) +
b1xi, and specify a hierarchical prior for the plot-level
intercept as Bp,w ~ Normal(bw, r2

e), followed by a hierar-
chical prior for the watershed-level intercept, bw ~ Nor-
mal(b0, r2

y). Note, r2
e and r2

y still describe the variability
among plots within a watershed and the variability
among watersheds, respectively. The model specification
is completed by assigning appropriate priors to b0, b1,
r2
e , r

2
y, and any additional parameters (e.g., observation

variances) introduced by the likelihood for the data.
If we are interested in making inferences about how

plots or watersheds deviate from the overall response
such that we wish to learn about ep,w and cw, then we
could retain the original formulation in Eq. (11) and
employ Solution 2 (sum-to-zero constraints; assuming
large Pw and W) or Solution 4 (post-sweeping; small or
large Pw and W). Both approaches require modifications
to account for plots being nested within watersheds; for
example, plot random effects sum to zero within each
watershed. Under Solution 2:

ep;w �Normal ð0;r2
eÞfor p ¼ 1; 2; � � � ;Pw � 1 and

ePw;w ¼ �
XPw�1

p¼1

ep;w for w ¼ 1; 2; � � � ;W

kw �Normal ð0;r2
cÞ for w ¼ 1; 2; � � � ;W � 1 and

kw ¼ �
XW�1

w¼1

kw

(12)

and the sum-to-zero constraint for cw follows Eq. (8).
Alternatively, Solution 4 computes the identifiable quan-
tities (e.g., Gilks and Roberts 1996):

e�p;w ¼ ep;w � ew where ew ¼ 1
Pw

PPw

p¼1
ep;w

c�w ¼ cw þ ew � c� ewhere c ¼ 1
W

PW
w¼1

cw and e ¼ 1
W

PW
w¼1

ew

b�0 ¼ b0 þ cþ e

:

(13)

That is, the average of the non-identifiable plot ran-
dom effects (ew) is computed within each watershed, and
this average is subtracted from the non-identifiable ep,w
terms and added to the cw terms, which also vary by w.
The average (cþ e) of the “new” non-identifiable water-
shed random effects (cw þ ew) is computed across all
watersheds, as done in Eq. (10), subtracted from the

non-identifiable random effect, and added to b0 to pro-
duce the identifiable global intercept (b�0). Again, adding
and subtracting ew, c, and e results in no net change to
the mean, li. Intuitively, all constants are swept from
plot effects into the watershed effects and from water-
shed effects into the overall constant effect, creating a
familiar interpretation of deviations from an overall con-
stant, often mean or intercept, effect. Example JAGS
code associated with this model, Eq. (11), is provided in
Appendix S1: Section S4.

Multiple groups of non-nested random effects.—Suppose
we have a model similar to Eq. (11), but the two groups
of random effects are crossed rather than nested such as
might occur for plots (plot p = 1, 2, . . ., P) and dates
(date d = 1, 2, . . ., D). The model becomes

li ¼ b0 þ b1xi þ epðiÞ þ kdðiÞ (14)

where p(i) and d(i) indicate plot p and date d associ-
ated with observation i. It is straightforward to hierar-
chically center one group of random effects; either center
the plot effects (ep) on the global intercept (b0) and use
one of the other solutions for the date random effects
(kd), or vice versa. If we stick with the parameterization
in Eq. (14), then the sum-to-zero constraint in Eq. (8) is
applied separately to ep and kd. The post-sweeping
approach computes the identifiable quantities

e�p ¼ ep � ewhere e ¼ 1
P

XP
p¼1

ep

k�d ¼ kd � kwhere k ¼ 1
D

XD
d¼1

kd

b�0 ¼ b0 þ eþ k

: (15)

That is, e�p and k�d are computed as in Eq. (10), but the
identifiable intercept is obtained by adding the means of
both groups of non-identifiable random effects to b0. As
discussed, constant values are swept from all effects into
the overall effect, again yielding the interpretation of
deviations about an overall constant or mean effect.
Example JAGS code associated with this model,
Eq. (14), is provided in Appendix S1: Section S5.
Of course, there may be situations that involve both

nested and non-nested random effects, such as random
effects for plots (within watersheds), watersheds, and
dates. For the sum-to-zero constraint, Eq. (12) would be
used for the plot and watershed effects, and Eq. (8) for
the date effects. For post-sweeping of random effects,
Eq. (13) would be used to compute the identifiable plot
and watershed effects, Eq. (15) for the identifiable date
effects, and the identifiable intercept would be computed
as b�0 ¼ b0 þ cþ eþ k (i.e., the non-identifiable intercept
is modified by the overall means for the non-identifiable
watershed, cþ e, and date random effects, k).
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Multiplicative random effects.—Multiplicative models
are commonly used and may take on a form similar to

li ¼ a0f ða; xÞdjðiÞ; (16)

where f(a,x) is some, likely nonlinear, function of poten-
tial covariates (x) and associated parameters (a). Here,
dj represents the multiplicative random effect associated
with group level j. We typically expect dj > 0 and that the
dj terms vary around an “average” value of one, which
represents no effect. Given the assumption dj > 0, the
normal priors listed in Eqs. (2–4) may not be appropri-
ate as they would allow for dj < 0, which would allow
for an unusual and abrupt change in li from positive to
negative. Thus, we would likely chose a different proba-
bility distribution for the prior that aligns with the
domain for dj, such as, but not limited to, a lognormal
or gamma distribution for dj > 0.
Note that a0 and the dj terms are not identifiable; for

example, we can multiply one (e.g., a0) by a constant c
and the other (e.g., dj) by 1/c, which changes the parame-
ters but not the mean, li. It is “easiest” to solve this iden-
tifiability problem by first linearizing Eq. (16) such that

logðliÞ ¼ logða0Þ þ logðf ða; xÞÞ þ logðdjðiÞÞ
¼ b0 þ logðf ða; xÞÞ þ ejðiÞ

(17)

where b0 and ej are the global intercept and random
effects, on the log scale, respectively; the priors in Eqs.
(2–4) would be appropriate for ej, with Eq. (4) being
most appropriate if viewed as a random effect. Thus,
hierarchical centering (using Eq. [3] as a prior for the
hierarchically centered random effect) or one of the
other solutions can be directly applied to ej (and b0 when
relevant) in Eq. (17). If the model cannot be linearized
in this way, then one could consider an approach that
parallels hierarchical centering by rewriting Eq. (16) as
li = aj(i) f(a,x), and specifying a hierarchical prior for aj,
parameterized such that the prior mean (or mode or
median) is E(aj) = a0, with appropriate priors for a, a0,
and any other parameters introduced by the hierarchical
prior for aj. For example, for aj> 0, we might model log
(aj) via a normal distribution with mean log(a0), or
model aj directly via a gamma distribution parameter-
ized such that E(aj) = a0 or mode(aj) = a0. Finally, it is
also possible that one could maintain the original Eq.
(16) and employ constraints (similar to Solution 2) on
the product of the random effects such that

QJ
j¼1 dj ¼ 1.

This involves specifying an appropriate prior distribu-
tion for dj > 0 for j = 1, 2, . . ., J – 1, and setting dJ =
ðQJ�1

j¼1 djÞ�1. We have tried this constraint in a limited
number of cases, but ultimately, we have been able to lin-
earize the model and employ more “standard” solutions
(our preference).
We note that nonlinear models may result in non-

identifiability of parameters in the nonlinear mean func-
tion, f(a,x), independent of the issues discussed here
related to identifiabilty of random effects (Beven and

Freer 2001, Luo et al. 2009, Parslow et al. 2013, Hines
et al. 2014). Other approaches to addressing non-identi-
fiability in complex or nonlinear models, including speci-
fication of informative priors, are discussed elsewhere
(e.g., Omlin and Reichert 1999, Eberly and Carlin 2000,
Raue et al. 2013, Hines et al. 2014).

Multiple groups of fixed effects.—The examples that we
have provided thus far focus on solutions to potential
identifiability problems that arise in random or mixed
effects models. These same identifiability issues can also
arise when incorporating additive (or multiplicative) fixed
effects. For example, Eq. (1) includes fixed effects for spe-
cies such that the overall intercept (b0,s) varies by species
(s), plus a random effect for plot (ep). We already dis-
cussed the non-identifiability of b0,s and ep, and
approaches to addressing this problem. What about mod-
els that involve nested or multiple groups of fixed effects?
For example, ep,w and cw in Eq. (11) could represent a
random effect associated with individual p nested in spe-
cies w (ep,w) and a fixed effect for species w (cw). Here,
each cw (species fixed effect) would be assigned an inde-
pendent prior following Eq. (2), but we still need to
employ the sum-to-zero or post-sweeping solutions so
that cw and the overall intercept are identifiable. Thus,
nothing would change in terms of implementing solutions
to the identifiability problem: the model (priors) only
changes slightly to reflect our interpretation of cw as a
fixed or random effect; for example, as a fixed effect, there
is no longer a variance term associated with the cw effects.
Similarly, the crossed effects (ep and kd) in Eq. (14) could
represent fixed effects of, say, species p and drought treat-
ment level d. Again, b0, ep, and kd are non-identifiable.
Given that species and drought level are viewed as
crossed, fixed effects and are likely assigned independent
(non-hierarchical) priors following Eq. (2), it is inappro-
priate to hierarchically center one of these effects around
the global intercept (this would introduce a variance term
that does not currently exist). However, we could still use
either the sum-to-zero constraint or the post-sweeping of
(fixed) effects solutions to overcome the identifiability
problem, as discussed for the random effects examples.
However, an alternative solution for dealing with non-

identifiable fixed effects that are assigned independent
priors, as illustrated in Eq. (2), is to pick one of the
levels to serve as the “reference” level or cell, and fix the
reference level’s effect at zero for additive effects or at
one for multiplicative effects (Gelman and Hill 2007).
The remaining effects are assigned priors according to
Eq. (2), for additive effects. The reference level may be
chosen to represent some nominal level (e.g., ambient
conditions) or the level associated with the greatest num-
ber of observations. Thus, the intercept (e.g., b0 in
Eqs. [11 and 14]) or the prefactor (e.g., a0 in Eq. [16])
are interpreted as the intercept or prefactor associated
with the reference level, and the fixed effects associated
with non-reference levels are interpreted as deviations
from the reference level.
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CONCLUSIONS

It is not clear if existing applications of hierarchical
Bayesian models to ecological data address the afore-
mentioned identifiability problems that arise by includ-
ing additive (or multiplicative) random and/or fixed
effects. The code (e.g., OpenBUGS, JAGS, or Stan) for
implementing such models is rarely provided with publi-
cations, though, sharing of data and code will likely
become more common (Nadrowski et al. 2013, Mich-
ener 2015, Bond-Lamberty et al. 2016, Dai et al. 2018,
Powers and Hampton 2019), and thus it is difficult to
evaluate if identifiability issues have been dealt with. If
not, this can result in poor mixing and convergence and
require a greater number of MCMC iterations, leading
to longer run times and potentially unduly wide interval
estimates for non-identifiable quantities (e.g., Table 1).
Our personal experience, based on both informal consul-
tation and evaluation of other’s code, and formal
reviews of manuscripts and code (when provided), sug-
gests that many practitioners are not aware of these
identifiability issues and are not implementing appropri-
ate solutions.
Thus, the goal of this paper is to both bring awareness

to the ecological community about these issues, espe-
cially since hierarchical Bayesian models are becoming
increasingly popular (Ellison 2004, Clark and Gelfand
2006, Ogle and Barber 2008) (Fig. 1), and to provide
explicit solutions. Regarding the latter, we provide exam-
ples of how to code (see Appendix S1: Sections S3–S5)
the hierarchical centering, sum-to-zero, and post-sweep-
ing solutions for the models defined in Eqs. (5, 11, and
14), representing models with a single group of random
(or fixed) effects (Appendix S1: Section S3), nested
effects (Appendix S1: Section S4), or crossed effects
(Appendix S1: Section S5), respectively. The code can be
implemented directly in JAGS or OpenBUGS, and it can
be easily modified for application in Stan.
While the model and code examples are provided in

the context of normally distributed data, e.g., yi ~ Nor-
mal(li, r

2), we again note that the data model (likeli-
hood) could be replaced by some other distribution
that is relevant to a particular problem (e.g., Binomial,
Poisson, log-normal, etc.). The mean model for li in
the normal-data example would thus represent the lin-
ear model for some transformation of E(yi), such as a
typical link function in a generalized linear model
(GLM). Thus, one would simply modify the data model
and provide the link function that relates the linear
model, li, to E(yi); some minor modifications may be
required if additional parameters are introduced or if
some parameters are no longer relevant (e.g., r2). For
example, in a logistic regression involving binomial
response data, yi, where we may specify a model like (1)
data model (likelihood): yi ~ Binomial(pi, Ni), where Ni

is the known number of trials and pi is the probability
of “success,” and (2) mean model with link function:
logit(pi) = li, with li as defined for the “normal data”

examples described herein. The modeling of the ran-
dom and fixed effects and specification of priors in the
model for li are as previously outlined, regardless of
the data model.
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