Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 3 Next »

RM_JAN22 is being repeated starting at PCR to increase the diversity of MIDs. Since we used two consecutive 16S MID plates for the first PCR, we suspect that this is causing the clusters to be too similar to properly pass through the flow cell. To fix this issue, the new PCR set up only used one MID plate (16S0H6) and was set up as follows:

 

1

2

3

4

5

6

7

8

9

10

11

12

A

RM_JAN22_Col1

RM_JAN22_Col2

RM_JAN22_Col3

RM_JAN22_Col4

RM_JAN22_Col5

RM_JAN22_Col1

RM_JAN22_Col2

RM_JAN22_Col3

RM_JAN22_Col4

RM_JAN22_Col5

B

RM_JAN22_Col1

RM_JAN22_Col2

RM_JAN22_Col3

RM_JAN22_Col4

RM_JAN22_Col5

RM_JAN22_Col1

RM_JAN22_Col2

RM_JAN22_Col3

RM_JAN22_Col4

RM_JAN22_Col5

C

RM_JAN22_Col1

RM_JAN22_Col2

RM_JAN22_Col3

RM_JAN22_Col4

RM_JAN22_Col5

RM_JAN22_Col1

RM_JAN22_Col2

RM_JAN22_Col3

RM_JAN22_Col4

RM_JAN22_Col5

D

RM_JAN22_Col1

RM_JAN22_Col2

RM_JAN22_Col3

RM_JAN22_Col4

RM_JAN22_Col5

RM_JAN22_Col1

RM_JAN22_Col2

RM_JAN22_Col3

RM_JAN22_Col4

RM_JAN22_Col5

E

RM_JAN22_Col1

RM_JAN22_Col2

RM_JAN22_Col3

RM_JAN22_Col4

RM_JAN22_Col5

RM_JAN22_Col1

RM_JAN22_Col2

RM_JAN22_Col3

RM_JAN22_Col4

RM_JAN22_Col5

F

RM_JAN22_Col1

RM_JAN22_Col2

RM_JAN22_Col3

RM_JAN22_Col4

RM_JAN22_Col5

RM_JAN22_Col1

RM_JAN22_Col2

RM_JAN22_Col3

RM_JAN22_Col4

RM_JAN22_Col5

G

RM_JAN22_Col1

RM_JAN22_Col2

RM_JAN22_Col3

RM_JAN22_Col4

RM_JAN22_Col5

RM_JAN22_Col1

RM_JAN22_Col2

RM_JAN22_Col3

RM_JAN22_Col4

RM_JAN22_Col5

H

RM_JAN22_Col1

RM_JAN22_Col2

RM_JAN22_Col3

RM_JAN22_Col4

RM_JAN22_Col5

RM_JAN22_Col1

RM_JAN22_Col2

RM_JAN22_Col3

RM_JAN22_Col4

RM_JAN22_Col5

MID: 16S0H6 (Col1-Col5)

MID: 16S0H6 (Col8-Col12)

Sample Processing

Plate: RMJan22_II (repeat)

MasterMix

ul/rxn

Reagent

# of rxns

ul needed

3

5X Kapa HiFi Buffer

80

300

0.45

10M dNTPs

80

45

0.3

Kapa HiFi HotStart DNA Pol

80

30

7.25

HPLC H2O

80

725

11

Total Volume

80

1100

  • Add 11 ul to each well of a hard shell, full skirt plate.

  • Add 2 ul of template and 2 ul of the primers.

Plate

16S MID

RM_Jan22_II

16S0H6

Run on Thermocycler Program GSAF36:

Temp C

Cycles

Time

95*

1X

3:00*

98

36X

0:30

62

36X

0:30

72

36X

0:30

72

1X

5:00

4

1X

0:00

MagBead Cleanup (16S Only):

Manually, it was done:

  • Equilibrate Beads to room Temperature

  • Add 24 ul of MagBeads to each well and 15 ul of replicate to same well of replicate

  • Pipette mix up and down 10 times.

  • Incubate at RT for 5 minutes

  • Secure plate on magnet plate; incubate at RT for 5 minutes (until wells are clear)

  • Remove 65 ul from each well; keep tips to left or right depending on the column to avoid bead pellet.

  • Add 100 ul Fresh 80% EtOH to each well. Incubate 30 seconds. Remove 100 ul from each well

  • Add 100 ul Fresh 80% EtOH to each well. Incubate 30 seconds. Remove 100 ul from each well

  • Reaspirate from each well to assure maximum EtOH removal

  • Allow plate to air dry for 7 minutes.

  • Remove sample plate from magnet plate.

  • Add 40 ul TE; pipette mix 10+ times. Incubate 2 minutes at RT.

  • Place sample plate back on magnet for 5 minutes or until all wells are cleared.

  • Transfer 40 ul to labeled transparent plate (Plate name_MIDs)

qPCR

  • Make 1:1000 dilutions of all samples using a deep well plate.

  • Add 16 ul of Illumina Library Quantification MasterMix to each well:

ul/rxn

Reagent

# of rxns

ul needed

10 ul

KAPA SYBR FAST qPCR MM (2X)

61

700

2 ul

Primer Premix (10X)

61

140

4 ul

Ultra Pure Water

61

280

16 ul

Total Volume

61

1120

  • Add 4 ul of template, pool, or standards to each well:

 

1

2

3

4

5

6

7

8

9

10

11

12

A

 RM_JAN22_II_16S_Col1

RM_JAN22_II_16S_Col2

RM_JAN22_II_16S_Col3

RM_JAN22_II_16S_Col4

RM_JAN22_II_16S_Col5

 

 

 

 

NTC

NTC

NTC

B

 RM_JAN22_II_16S_Col1

RM_JAN22_II_16S_Col2

RM_JAN22_II_16S_Col3

RM_JAN22_II_16S_Col4

RM_JAN22_II_16S_Col5

 

 

 

 

0.0002 pM Std

0.0002 pM Std

0.0002 pM Std

C

 RM_JAN22_II_16S_Col1

RM_JAN22_II_16S_Col2

RM_JAN22_II_16S_Col3

RM_JAN22_II_16S_Col4

RM_JAN22_II_16S_Col5

 

 

 

 

0.002 pM Std

0.002 pM Std

0.002 pM Std

D

 RM_JAN22_II_16S_Col1

RM_JAN22_II_16S_Col2

RM_JAN22_II_16S_Col3

RM_JAN22_II_16S_Col4

RM_JAN22_II_16S_Col5

 

 

 

 

0.02 pM Std

0.02 pM Std

0.02 pM Std

E

 RM_JAN22_II_16S_Col1

RM_JAN22_II_16S_Col2

RM_JAN22_II_16S_Col3

RM_JAN22_II_16S_Col4

RM_JAN22_II_16S_Col5

 

 

 

 

0.2 pM Std

0.2 pM Std

0.2 pM Std

F

 RM_JAN22_II_16S_Col1

RM_JAN22_II_16S_Col2

RM_JAN22_II_16S_Col3

RM_JAN22_II_16S_Col4

RM_JAN22_II_16S_Col5

 

 

 

 

2 pM Std

2 pM Std

2 pM Std

G

 RM_JAN22_II_16S_Col1

RM_JAN22_II_16S_Col2

RM_JAN22_II_16S_Col3

RM_JAN22_II_16S_Col4

RM_JAN22_II_16S_Col5

 

 

 

 

20 pM Std

20 pM Std

20 pM Std

H

 RM_JAN22_II_16S_Col1

RM_JAN22_II_16S_Col2

RM_JAN22_II_16S_Col3

RM_JAN22_II_16S_Col4

RM_JAN22_II_16S_Col5

 

 

 

 

 

 

 

Results:

Full result report can be viewed below:

Pool qPCR results:

iSeq Run:

Dilute to 1 nM based off qPCR results. qPCR results are in pM, but 1:1000 dilution used. The results are effectively in nM for pool.

  • 1000/Results = ul of Pool to Add

1000/32.25 = 31uL of Pool to Add

  • 100 - uL of Pool to Add = ul of “10 mM Tris 8.5” to Add

1000- 31 = 969uL of 10mM Tris 8.5

*1nM pool will be combined with 1nM pool for the low read 2.5 experiment. Directions for iSeq prep found here.

  • No labels