Bo Stevens AMF Library Prep

Plates: BS_PLT1, BS_PLT2

PCR MasterMix

ul/rxn

Reagent

# of rxns

ul needed

ul/rxn

Reagent

# of rxns

ul needed

3

5X Kapa HiFi Buffer

390

1170

0.45

10M dNTPs

390

176

0.3

Kapa HiFi HotStart DNA Pol

390

117

7.25

HPLC H2O

390

2827

11

Total Volume

390

4290

  • Add 11 ul to each well of a hard shell, full skirt plate. Add 2 uL of primers and 2uL of template to each well.

Plate

Primer

Plate

Primer

BS_PLT1

AMF01

AMF02

BS_PLT2

AMF03

AMF04

Run on thermocycler program AMF35:

Step

Temp C

Cycles

Time

Step

Temp C

Cycles

Time

Denature

95

1X

10:00

Denature

95

35X

0:30

Annealing

55

35X

0:30

Extension/Elongation

72

35X

1:00

Extension/Elongation

72

1X

9:00

Hold

4

1X

0:00

MagBead Cleanup:

  • Equilibrate Beads to room temperature

  • Add 24 ul of MagBeads to each well and 15 ul of replicate to same well of replicate

  • Pipette mix up and down 10 times.

  • Incubate at RT for 5 minutes

  • Secure plate on magnet plate; incubate at RT for 5 minutes (until wells are clear)

  • Remove 65 ul from each well; keep tips to left or right depending on the column to avoid bead pellet.

  • Add 100 ul Fresh 80% EtOH to each well. Incubate 30 seconds. Remove 100 ul from each well

  • Add 100 ul Fresh 80% EtOH to each well. Incubate 30 seconds. Remove 100 ul from each well

  • Reaspirate from each well to assure maximum EtOH removal

  • Allow plate to air dry for 7 minutes.

  • Remove sample plate from magnet plate.

  • Add 40 ul TE; pipette mix 10+ times. Incubate 2 minutes at RT.

  • Place sample plate back on magnet for 5 minutes or until all wells are cleared.

  • Transfer 40 ul to labeled transparent plate (Plate name_PCR_MIDs)

qPCR

  • Make 1:1000 dilutions of column 1,6,10 from the PCR plates by adding 1 ul to 999 ul TE in a deep well plate:

 

1

2

3

4

5

6

7

8

9

10

11

12

 

1

2

3

4

5

6

7

8

9

10

11

12

A

BS_PLT1_Col1

BS_PLT1_Col6

BS_PLT1_Col10

BS_PLT2_Col1

BS_PLT2_Col6

BS_PLT2_Col10

BS_AMF_Pool

 

 

NTC

NTC

NTC

B

BS_PLT1_Col1

BS_PLT1_Col6

BS_PLT1_Col10

BS_PLT2_Col1

BS_PLT2_Col6

BS_PLT2_Col10

 BS_AMF_Pool

 

 

0.0002 pM Std

0.0002 pM Std

0.0002 pM Std

C

BS_PLT1_Col1

BS_PLT1_Col6

BS_PLT1_Col10

BS_PLT2_Col1

BS_PLT2_Col6

BS_PLT2_Col10

 BS_AMF_Pool

 

 

0.002 pM Std

0.002 pM Std

0.002 pM Std

D

BS_PLT1_Col1

BS_PLT1_Col6

BS_PLT1_Col10

BS_PLT2_Col1

BS_PLT2_Col6

BS_PLT2_Col10

 

 

 

0.02 pM Std

0.02 pM Std

0.02 pM Std

E

BS_PLT1_Col1

BS_PLT1_Col6

BS_PLT1_Col10

BS_PLT2_Col1

BS_PLT2_Col6

BS_PLT2_Col10

 

 

 

0.2 pM Std

0.2 pM Std

0.2 pM Std

F

BS_PLT1_Col1

BS_PLT1_Col6

BS_PLT1_Col10

BS_PLT2_Col1

BS_PLT2_Col6

BS_PLT2_Col10

 

 

 

2 pM Std

2 pM Std

2 pM Std

G

BS_PLT1_Col1

BS_PLT1_Col6

BS_PLT1_Col10

BS_PLT2_Col1

BS_PLT2_Col6

BS_PLT2_Col10

 

 

 

20 pM Std

20 pM Std

20 pM Std

H

BS_PLT1_Col1

BS_PLT1_Col6

BS_PLT1_Col10

BS_PLT2_Col1

BS_PLT2_Col6

BS_PLT2_Col10

 

 

 

 

 

 

  • Add 16 ul of Illumina Library Quantification MasterMix to each well:

ul/rxn

Reagent

# of rxns

ul needed

ul/rxn

Reagent

# of rxns

ul needed

10 ul

KAPA SYBR FAST qPCR MM (2X)

110

1100

2 ul

Primer Premix (10X)

110

220

4 ul

Ultra Pure Water

110

440

16 ul

Total Volume

110

1760

  • Add 4 ul of template, pool, or standards to each well:

 

1

2

3

4

5

6

7

8

9

10

11

12

 

1

2

3

4

5

6

7

8

9

10

11

12

A

BS_PLT1_Col1

BS_PLT1_Col6

BS_PLT1_Col10

BS_PLT2_Col1

BS_PLT2_Col6

BS_PLT2_Col10

BS_AMF_Pool

 

 

NTC

NTC

NTC

B

BS_PLT1_Col1

BS_PLT1_Col6

BS_PLT1_Col10

BS_PLT2_Col1

BS_PLT2_Col6

BS_PLT2_Col10

BS_AMF_Pool

 

 

0.0002 pM Std

0.0002 pM Std

0.0002 pM Std

C

BS_PLT1_Col1

BS_PLT1_Col6

BS_PLT1_Col10

BS_PLT2_Col1

BS_PLT2_Col6

BS_PLT2_Col10

BS_AMF_Pool

 

 

0.002 pM Std

0.002 pM Std

0.002 pM Std

D

BS_PLT1_Col1

BS_PLT1_Col6

BS_PLT1_Col10

BS_PLT2_Col1

BS_PLT2_Col6

BS_PLT2_Col10

 

 

 

0.02 pM Std

0.02 pM Std

0.02 pM Std

E

BS_PLT1_Col1

BS_PLT1_Col6

BS_PLT1_Col10

BS_PLT2_Col1

BS_PLT2_Col6

BS_PLT2_Col10

 

 

 

0.2 pM Std

0.2 pM Std

0.2 pM Std

F

BS_PLT1_Col1

BS_PLT1_Col6

BS_PLT1_Col10

BS_PLT2_Col1

BS_PLT2_Col6

BS_PLT2_Col10

 

 

 

2 pM Std

2 pM Std

2 pM Std

G

BS_PLT1_Col1

BS_PLT1_Col6

BS_PLT1_Col10

BS_PLT2_Col1

BS_PLT2_Col6

BS_PLT2_Col10

 

 

 

20 pM Std

20 pM Std

20 pM Std

H

BS_PLT1_Col1

BS_PLT1_Col6

BS_PLT1_Col10

BS_PLT2_Col1

BS_PLT2_Col6

BS_PLT2_Col10

 

 

 

 

 

 

Results:

There were some outliers, but most samples generated 10s of nano moles (~50).

The pool via standard size estimation returned a mean of 42.66 nM. This should be adjusted for the difference between the standards' fragment sizes and the expected product size (452 vs 481). 42.66x(452/481) = 40.087 or ~40 nM

Sequencing Test:

Dilute to 1 nM based off qPCR results. qPCR results are in pM, but 1:1000 dilution used. The results are effectively in nM for pool.

  • 1000/Results = ul of Pool to Add

1000/40 = 25uL of Pool to Add

  • 1000 - uL of Pool to Add = ul of “10 mM Tris 8.5” to Add

1000- 25 = 975 uL of 10mM Tris 8.5

Dilute 1 nM full pool to loading concentration of 50 pM:

  • Add 5 ul 1 nM Pool to 85 ul “10 mM Tris 8.5” and 10 ul 50 pM PhiX

  • Remove iSeq 100 i1 Flow Cell from refrigerator 5’s crisper drawer and open white foil pack and allow to equilibrate to RT for 10-15 minutes.

  • Open “iSeq 100 i1 Reagent Cartridge v2”. Turn on iSeq100

  • Click on “Sequence”. Watch Video. Do what video tells you to do. Follow on screen instructions until run starts.

  •  

Pooling for CU sequencing:

 

library(tidyverse) AmfReads <- read.csv("/Users/gregg/Downloads/AMF1_Test_filtermergestats.csv", header = FALSE) Map <- read.csv("/Users/gregg/Downloads/Bo_Stevens_Sample_Positions.csv", header=TRUE) Map <- Map[,c(1,2,4)] Map$order <- c(1:96, 1:92) AMFmeta <- data.frame(do.call('rbind', strsplit(as.character(AmfReads$V1),'.',fixed=TRUE))) AmfReads <- cbind(AMFmeta$X2, AmfReads[,2:4]) names(AmfReads) <- c("Sample.ID", "Reads", "Reads2", "Reads3") AmfReads <- inner_join(AmfReads, Map, by = "Sample.ID") LowAmf <- AmfReads[ which(AmfReads$Reads < 500),] write.csv(LowAmf, "/Users/gregg/Downloads/LowAmf.csv", quote = FALSE, row.names = FALSE)

AMF1_Test_filtermergestats.csv Bo_Stevens_Sample_Positions.csv

Sample.ID

Reads

Reads2

Reads3

Plate.Position

Plate

order

A26

35

26

18

A9

2

65

A27

42

20

15

B9

2

66

A29

16

7

4

C9

2

68

A30

36

24

11

D9

2

69

A31

40

20

15

E9

2

70

A32

28

18

11

F9

2

71

A34

36

12

8

G9

2

73

A35

34

18

10

H9

2

74

B3

392

248

149

G11

2

91

L108

77

47

32

F4

1

30

L54

70

33

19

F7

1

54

L88

416

236

143

A4

1

25

LB1

104

51

34

A2

1

9

LB2

164

107

45

F3

1

22

LB3

70

35

20

C5

1

35

LB4

308

194

159

H6

1

48

LB5

310

169

129

E8

1

61

LB6

118

68

50

B10

1

74

LB7

374

219

161

G11

1

87

Since the test sequencing included all samples, we are adjusting pooling for samples that both replicates returned less than 500 reads each. These samples will be pooled at a volume of 20 ul while all others will be pooled at 2 ul. 2 ul from all was combined into one column of strip tubes. 18 ul was added by well pattern above. Tubes were vortexed and centrifuged. 100 ul was added from each strip tube to a 1.5 ml tube which was vortexed and centrifuged before 40 ul was transferred to a tube for shipping.